Design of a Calibration Phantom for Measuring the Temporal Resolution of a Tomographic Imaging DeviceSource: Journal of Medical Devices:;2007:;volume( 001 ):;issue: 003::page 225DOI: 10.1115/1.2785189Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This paper describes the design and development of a calibration phantom to be used to aid in the calculation of the temporal resolution of tomographic imaging devices. Current practice for characterizing the dynamic response of a tomographic imaging device, such as a computed tomography or magnetic resonance imaging machine, uses image acquisition time as a surrogate for temporal resolution. At present, no standard method for describing the temporal resolution of a tomographic imaging device exists. Similar to the spatial modulation transfer function (MTF) used for characterizing spatial resolution, the concept of temporal MTF (t-MTF) can be used to enable characterization of temporal resolution. A scanner’s t-MTF represents the percentage amplitude modulation transfer in the image as a function of the input frequency. The calibration phantom uses slotted disks, each mounted to the rotating ring gear of a planetary gear assembly. The sun gears of each planetary gear set are driven from a common shaft to create differential speed sectors, allowing for about two decades of input frequencies to be obtained using a single motor and driveshaft. Preliminary results show a monotonic decline in the modulation transfer as the input frequency is increased. As expected, there is more modulation transfer at lower frequency and less modulation transfer at high frequency. Analogous to the spatial resolution, one can define the frequency for which there is 10% modulation transfer as the temporal resolution of a scanner.
keyword(s): Engines , Manufacturing , Planetary gears , Resolution (Optics) , Design , Gears , Disks , Calibration , Frequency , Phantoms , Imaging , Sun gears , Machinery , Transfer functions , Bearings AND Signals ,
|
Collections
Show full item record
| contributor author | Alexander H. Slocum | |
| contributor author | Stephen E. Jones | |
| contributor author | Rajiv Gupta | |
| date accessioned | 2017-05-09T00:25:16Z | |
| date available | 2017-05-09T00:25:16Z | |
| date copyright | September, 2007 | |
| date issued | 2007 | |
| identifier issn | 1932-6181 | |
| identifier other | JMDOA4-27985#225_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/136571 | |
| description abstract | This paper describes the design and development of a calibration phantom to be used to aid in the calculation of the temporal resolution of tomographic imaging devices. Current practice for characterizing the dynamic response of a tomographic imaging device, such as a computed tomography or magnetic resonance imaging machine, uses image acquisition time as a surrogate for temporal resolution. At present, no standard method for describing the temporal resolution of a tomographic imaging device exists. Similar to the spatial modulation transfer function (MTF) used for characterizing spatial resolution, the concept of temporal MTF (t-MTF) can be used to enable characterization of temporal resolution. A scanner’s t-MTF represents the percentage amplitude modulation transfer in the image as a function of the input frequency. The calibration phantom uses slotted disks, each mounted to the rotating ring gear of a planetary gear assembly. The sun gears of each planetary gear set are driven from a common shaft to create differential speed sectors, allowing for about two decades of input frequencies to be obtained using a single motor and driveshaft. Preliminary results show a monotonic decline in the modulation transfer as the input frequency is increased. As expected, there is more modulation transfer at lower frequency and less modulation transfer at high frequency. Analogous to the spatial resolution, one can define the frequency for which there is 10% modulation transfer as the temporal resolution of a scanner. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Design of a Calibration Phantom for Measuring the Temporal Resolution of a Tomographic Imaging Device | |
| type | Journal Paper | |
| journal volume | 1 | |
| journal issue | 3 | |
| journal title | Journal of Medical Devices | |
| identifier doi | 10.1115/1.2785189 | |
| journal fristpage | 225 | |
| journal lastpage | 232 | |
| identifier eissn | 1932-619X | |
| keywords | Engines | |
| keywords | Manufacturing | |
| keywords | Planetary gears | |
| keywords | Resolution (Optics) | |
| keywords | Design | |
| keywords | Gears | |
| keywords | Disks | |
| keywords | Calibration | |
| keywords | Frequency | |
| keywords | Phantoms | |
| keywords | Imaging | |
| keywords | Sun gears | |
| keywords | Machinery | |
| keywords | Transfer functions | |
| keywords | Bearings AND Signals | |
| tree | Journal of Medical Devices:;2007:;volume( 001 ):;issue: 003 | |
| contenttype | Fulltext |