Mechanistic Modeling of Process Damping in Peripheral MillingSource: Journal of Manufacturing Science and Engineering:;2007:;volume( 129 ):;issue: 001::page 12DOI: 10.1115/1.2335857Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This paper extends analytical modeling of the milling process to include process damping effects. Two cutting mechanisms (shearing and plowing mechanisms) and two process damping effects (directional and magnitude effects) are included. The directional effect is related to vibration energy dissipation due to directional variation of cutter∕workpiece relative motion. The magnitude effect is associated with change in force magnitude due to variation of rake angle and clearance angle. Process damping is summarized as containing these separate components: direction-shearing, direction-plowing, magnitude-shearing, and magnitude-plowing. The total force model including the process damping effect is obtained through convolution integration of the local forces. The analytical nature of this model makes it possible to determine two unknown dynamic cutting factors from measured vibration signal during milling. The effects of cutting conditions (cutting speed, feed, axial and radial depths of cut) on process damping are systematically examined. It is shown that total process damping increases with increasing feed, axial and radial depths of cut, but decreases with increasing cutting velocity. Predictions based on the analytical model are verified by experiment. Results show that plowing mechanism contributes more to the total damping effect than the shearing mechanism, and magnitude-plowing effect has by far the greatest influence on total damping.
keyword(s): Force , Damping , Cutting , Milling , Vibration , Mechanisms , Modeling AND Shearing ,
|
Collections
Show full item record
contributor author | C. Y. Huang | |
contributor author | J. J. Junz Wang | |
date accessioned | 2017-05-09T00:24:51Z | |
date available | 2017-05-09T00:24:51Z | |
date copyright | February, 2007 | |
date issued | 2007 | |
identifier issn | 1087-1357 | |
identifier other | JMSEFK-27964#12_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/136351 | |
description abstract | This paper extends analytical modeling of the milling process to include process damping effects. Two cutting mechanisms (shearing and plowing mechanisms) and two process damping effects (directional and magnitude effects) are included. The directional effect is related to vibration energy dissipation due to directional variation of cutter∕workpiece relative motion. The magnitude effect is associated with change in force magnitude due to variation of rake angle and clearance angle. Process damping is summarized as containing these separate components: direction-shearing, direction-plowing, magnitude-shearing, and magnitude-plowing. The total force model including the process damping effect is obtained through convolution integration of the local forces. The analytical nature of this model makes it possible to determine two unknown dynamic cutting factors from measured vibration signal during milling. The effects of cutting conditions (cutting speed, feed, axial and radial depths of cut) on process damping are systematically examined. It is shown that total process damping increases with increasing feed, axial and radial depths of cut, but decreases with increasing cutting velocity. Predictions based on the analytical model are verified by experiment. Results show that plowing mechanism contributes more to the total damping effect than the shearing mechanism, and magnitude-plowing effect has by far the greatest influence on total damping. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Mechanistic Modeling of Process Damping in Peripheral Milling | |
type | Journal Paper | |
journal volume | 129 | |
journal issue | 1 | |
journal title | Journal of Manufacturing Science and Engineering | |
identifier doi | 10.1115/1.2335857 | |
journal fristpage | 12 | |
journal lastpage | 20 | |
identifier eissn | 1528-8935 | |
keywords | Force | |
keywords | Damping | |
keywords | Cutting | |
keywords | Milling | |
keywords | Vibration | |
keywords | Mechanisms | |
keywords | Modeling AND Shearing | |
tree | Journal of Manufacturing Science and Engineering:;2007:;volume( 129 ):;issue: 001 | |
contenttype | Fulltext |