YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite Element Analysis of Solidification in Rapid Freeze Prototyping

    Source: Journal of Manufacturing Science and Engineering:;2007:;volume( 129 ):;issue: 004::page 810
    Author:
    Qingbin Liu
    ,
    Ming C. Leu
    DOI: 10.1115/1.2738095
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Rapid freeze prototyping (RFP) can generate three-dimensional ice patterns from computer-aided design (CAD) models by depositing and solidifying water droplets layer by layer. One important issue of the RFP process is how to fabricate the ice pattern to desired accuracy in an acceptable short time. The waiting time between two successive layers is a critical factor. A waiting time that is too short will lead to unacceptable part accuracy, while a waiting time that is too long will lead to an excessive build time. Finite element analysis is employed in this study to predict the solidification time of a newly deposited water layer and to develop a better understanding of heat transfer during the RFP process. ANSYS Parametric Development Language (APDL) is utilized to develop software for the prediction of solidification time. The result is used to investigate the effect of various process parameters on the solidification time of an ice column and a vertical ice wall. These parameters include environment temperature, heat convection coefficient, initial water droplet temperature, layer thickness, and waiting time between two successive layers. Experiments are conducted and the measured results are shown to agree well with simulation results.
    keyword(s): Finite element analysis , Ice , Solidification , Temperature , Water , Convection , Heat AND Thickness ,
    • Download: (1.538Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite Element Analysis of Solidification in Rapid Freeze Prototyping

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136287
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorQingbin Liu
    contributor authorMing C. Leu
    date accessioned2017-05-09T00:24:44Z
    date available2017-05-09T00:24:44Z
    date copyrightAugust, 2007
    date issued2007
    identifier issn1087-1357
    identifier otherJMSEFK-28015#810_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136287
    description abstractRapid freeze prototyping (RFP) can generate three-dimensional ice patterns from computer-aided design (CAD) models by depositing and solidifying water droplets layer by layer. One important issue of the RFP process is how to fabricate the ice pattern to desired accuracy in an acceptable short time. The waiting time between two successive layers is a critical factor. A waiting time that is too short will lead to unacceptable part accuracy, while a waiting time that is too long will lead to an excessive build time. Finite element analysis is employed in this study to predict the solidification time of a newly deposited water layer and to develop a better understanding of heat transfer during the RFP process. ANSYS Parametric Development Language (APDL) is utilized to develop software for the prediction of solidification time. The result is used to investigate the effect of various process parameters on the solidification time of an ice column and a vertical ice wall. These parameters include environment temperature, heat convection coefficient, initial water droplet temperature, layer thickness, and waiting time between two successive layers. Experiments are conducted and the measured results are shown to agree well with simulation results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFinite Element Analysis of Solidification in Rapid Freeze Prototyping
    typeJournal Paper
    journal volume129
    journal issue4
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2738095
    journal fristpage810
    journal lastpage820
    identifier eissn1528-8935
    keywordsFinite element analysis
    keywordsIce
    keywordsSolidification
    keywordsTemperature
    keywordsWater
    keywordsConvection
    keywordsHeat AND Thickness
    treeJournal of Manufacturing Science and Engineering:;2007:;volume( 129 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian