YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Applied Plastic Strain Methods for Welding Distortion Prediction

    Source: Journal of Manufacturing Science and Engineering:;2007:;volume( 129 ):;issue: 006::page 1000
    Author:
    L. Zhang
    ,
    P. Michaleris
    ,
    P. Marugabandhu
    DOI: 10.1115/1.2716740
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Large and complex structures such as ship panels generally have various types of welding-induced distortions including angular deformation, longitudinal bending, and buckling. Developing efficient methodologies for modeling welding distortions and residual stresses of large structures plays a critical role in industrial applications. Conventional transient moving source analyses on three-dimensional (3D) finite element models, where millions of degrees of freedom and thousands of time increments are involved, demonstrate the capability to capture all types of welding distortions, but proved to be computational costly. The 2D to 3D applied plastic strain method, where only longitudinal plastic strain resulting from 2D models is mapped to a 3D structural model, successfully predicts buckling and bowing distortions. However, it cannot calculate angular distortion accurately. In this paper, a 3D applied plastic strain method has been developed to predict the welding distortions for structures. In the applied strain method, six components of the plastic strain of each weld are calculated by performing a 3D moving source analysis on a small 3D model with a shorter length, then the plastic strain components of the small models are mapped and superposed to a large 3D structural model to obtain the final distortion results. An interpolation algorithm is developed for mapping between meshes with different densities. The effectiveness of the 3D applied plastic strain method is evaluated by comparing to the distortion results from 3D moving source simulations. The mapping algorithm is verified and the effects of the model size on the distortion results are investigated. The numerical results show that the applied plastic strain method accounts all distortion modes, but is only qualitatively accurate for the prediction of angular distortion.
    keyword(s): Welding ,
    • Download: (2.195Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Applied Plastic Strain Methods for Welding Distortion Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136239
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorL. Zhang
    contributor authorP. Michaleris
    contributor authorP. Marugabandhu
    date accessioned2017-05-09T00:24:40Z
    date available2017-05-09T00:24:40Z
    date copyrightDecember, 2007
    date issued2007
    identifier issn1087-1357
    identifier otherJMSEFK-28025#1000_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136239
    description abstractLarge and complex structures such as ship panels generally have various types of welding-induced distortions including angular deformation, longitudinal bending, and buckling. Developing efficient methodologies for modeling welding distortions and residual stresses of large structures plays a critical role in industrial applications. Conventional transient moving source analyses on three-dimensional (3D) finite element models, where millions of degrees of freedom and thousands of time increments are involved, demonstrate the capability to capture all types of welding distortions, but proved to be computational costly. The 2D to 3D applied plastic strain method, where only longitudinal plastic strain resulting from 2D models is mapped to a 3D structural model, successfully predicts buckling and bowing distortions. However, it cannot calculate angular distortion accurately. In this paper, a 3D applied plastic strain method has been developed to predict the welding distortions for structures. In the applied strain method, six components of the plastic strain of each weld are calculated by performing a 3D moving source analysis on a small 3D model with a shorter length, then the plastic strain components of the small models are mapped and superposed to a large 3D structural model to obtain the final distortion results. An interpolation algorithm is developed for mapping between meshes with different densities. The effectiveness of the 3D applied plastic strain method is evaluated by comparing to the distortion results from 3D moving source simulations. The mapping algorithm is verified and the effects of the model size on the distortion results are investigated. The numerical results show that the applied plastic strain method accounts all distortion modes, but is only qualitatively accurate for the prediction of angular distortion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation of Applied Plastic Strain Methods for Welding Distortion Prediction
    typeJournal Paper
    journal volume129
    journal issue6
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2716740
    journal fristpage1000
    journal lastpage1010
    identifier eissn1528-8935
    keywordsWelding
    treeJournal of Manufacturing Science and Engineering:;2007:;volume( 129 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian