YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physicochemical Properties of Alkaline Aqueous Sodium Metaborate Solutions

    Source: Journal of Fuel Cell Science and Technology:;2007:;volume( 004 ):;issue: 001::page 88
    Author:
    Caroline R. Cloutier
    ,
    Elod Gyenge
    ,
    Akram Alfantazi
    DOI: 10.1115/1.2393310
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Background: The transition to a hydrogen fuel economy is hindered by the lack of a practical storage method and concerns associated with its safe handling. Chemical hydrides have the potential to address these concerns. Sodium borohydride (sodium tetrahydroborate, NaBH4), is the most attractive chemical hydride for H2 generation and storage in automotive fuel cell applications, but recycling from sodium metaborate (NaBO2), is difficult and costly. An electrochemical regeneration process could represent an economically feasible and environmentally friendly solution. Method of Approach: We report a study of the properties of concentrated NaBO2 alkaline aqueous solutions that are necessary to the development of electrochemical recycling methods. The solubility, pH, density, conductivity, and viscosity of aqueous NaBO2 solutions containing varying weight percentages (1, 2, 3, 5, 7.5, and 10wt.%) of alkali hydroxides (NaOH, KOH, and LiOH) were evaluated at 25°C. The precipitates formed in supersaturated solutions were characterized by x-ray diffraction and scanning electron microscopy. Results: All NaBO2 physicochemical properties investigated, except solubility, increased with increased hydroxide ion concentration. The solubility of NaBO2 was enhanced by the addition of KOH to the saturated solution, but decreased when LiOH and NaOH were used. The highest ionic conductivity (198.27S∕m) was obtained from the filtrate of saturated aqueous solutions containing more than 30wt.%NaBO2 and 10wt.% NaOH prior to filtration. At 10wt.% hydroxide, the viscosity of the NaBO2 solution was the highest in the case of LiOH (11.38 cP) and lowest for those containing NaOH (6.37 cP). The precipitate was hydrated, NaBO2 for all hydroxides, but its hydration level was unclear. Conclusions: The use of KOH as the electrolyte was found to be more advantageous for the H2 storage and generation system based on NaBO2 solubility and solution half-life. However, the addition of NaOH led to the highest ionic conductivity, and its use seems more suitable for the electroreduction of NaBO2. Further investigations on the impact of KOH and NaOH on the electroreduction of NaBO2 in aqueous media have the potential to enhance the commercial viability of NaBH4.
    keyword(s): Density , Weight (Mass) , Half-life , X-ray diffraction , Viscosity , Scanning electron microscopy , Conductivity , Electrolytes , Ionic conductivity , Sodium , Storage , Water , Recycling , Temperature , Cathodic protection , Filtration , Stability AND Fuel cell applications ,
    • Download: (443.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physicochemical Properties of Alkaline Aqueous Sodium Metaborate Solutions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136149
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorCaroline R. Cloutier
    contributor authorElod Gyenge
    contributor authorAkram Alfantazi
    date accessioned2017-05-09T00:24:28Z
    date available2017-05-09T00:24:28Z
    date copyrightFebruary, 2007
    date issued2007
    identifier issn2381-6872
    identifier otherJFCSAU-28928#88_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136149
    description abstractBackground: The transition to a hydrogen fuel economy is hindered by the lack of a practical storage method and concerns associated with its safe handling. Chemical hydrides have the potential to address these concerns. Sodium borohydride (sodium tetrahydroborate, NaBH4), is the most attractive chemical hydride for H2 generation and storage in automotive fuel cell applications, but recycling from sodium metaborate (NaBO2), is difficult and costly. An electrochemical regeneration process could represent an economically feasible and environmentally friendly solution. Method of Approach: We report a study of the properties of concentrated NaBO2 alkaline aqueous solutions that are necessary to the development of electrochemical recycling methods. The solubility, pH, density, conductivity, and viscosity of aqueous NaBO2 solutions containing varying weight percentages (1, 2, 3, 5, 7.5, and 10wt.%) of alkali hydroxides (NaOH, KOH, and LiOH) were evaluated at 25°C. The precipitates formed in supersaturated solutions were characterized by x-ray diffraction and scanning electron microscopy. Results: All NaBO2 physicochemical properties investigated, except solubility, increased with increased hydroxide ion concentration. The solubility of NaBO2 was enhanced by the addition of KOH to the saturated solution, but decreased when LiOH and NaOH were used. The highest ionic conductivity (198.27S∕m) was obtained from the filtrate of saturated aqueous solutions containing more than 30wt.%NaBO2 and 10wt.% NaOH prior to filtration. At 10wt.% hydroxide, the viscosity of the NaBO2 solution was the highest in the case of LiOH (11.38 cP) and lowest for those containing NaOH (6.37 cP). The precipitate was hydrated, NaBO2 for all hydroxides, but its hydration level was unclear. Conclusions: The use of KOH as the electrolyte was found to be more advantageous for the H2 storage and generation system based on NaBO2 solubility and solution half-life. However, the addition of NaOH led to the highest ionic conductivity, and its use seems more suitable for the electroreduction of NaBO2. Further investigations on the impact of KOH and NaOH on the electroreduction of NaBO2 in aqueous media have the potential to enhance the commercial viability of NaBH4.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePhysicochemical Properties of Alkaline Aqueous Sodium Metaborate Solutions
    typeJournal Paper
    journal volume4
    journal issue1
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.2393310
    journal fristpage88
    journal lastpage98
    identifier eissn2381-6910
    keywordsDensity
    keywordsWeight (Mass)
    keywordsHalf-life
    keywordsX-ray diffraction
    keywordsViscosity
    keywordsScanning electron microscopy
    keywordsConductivity
    keywordsElectrolytes
    keywordsIonic conductivity
    keywordsSodium
    keywordsStorage
    keywordsWater
    keywordsRecycling
    keywordsTemperature
    keywordsCathodic protection
    keywordsFiltration
    keywordsStability AND Fuel cell applications
    treeJournal of Fuel Cell Science and Technology:;2007:;volume( 004 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian