YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quality Assurance and Solid Oxide Fuel Cell Testing at Forschungszentrum Juelich

    Source: Journal of Fuel Cell Science and Technology:;2007:;volume( 004 ):;issue: 002::page 194
    Author:
    V. A. C. Haanappel
    ,
    M. J. Smith
    DOI: 10.1115/1.2713782
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Standardization of fuel cell testing to allow comparisons presents one of the major challenges to the fuel cell community. This becomes more critical when there is a need to take commercial decisions on the direction of the technology. One part of the development toward such standardization is the formalization of what measurements are made and how they are made, including the control of external and environmental parameters. This presentation details some of the elements of the standardized measuring system in place at Forschungszentrum Jülich (FZJ) and explains some of the rationale behind this system. The established measurement system adopts many of the principles employed by generic international quality assurance standards and commercial organizations. An analysis of the testing process identifies critical control points, e.g., those parameters that must be controlled to ensure internally consistent test results and repeatability. The FZJ solid oxide fuel cell (SOFC) testing process is illustrated by means of a flowchart. This chart details critical control points and shows how the parameter measurements are documented in a systematic fashion. Specific examples are given of SOFC test data to illustrate how FZJ determined some of the critical control parameter values used in our testing, those included are the effects of Ni-cermet reduction temperature, the effect of the chosen time intervals between individual I-V measurement points, and finally, the effect of the hydrogen flow rate. Standardization within the SOFC community can prove a contentious issue, but whatever standard test parameters are finally chosen by the community, to allow comparison of SOFC options organizations will have a need to introduce a well-designed, controlled, and formalized measurement system. We have found that adopting a generic QA systems approach has been successful internally and recommend this option to other organizations.
    keyword(s): Measurement , Solid oxide fuel cells , Testing , Temperature AND Quality control ,
    • Download: (1.387Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quality Assurance and Solid Oxide Fuel Cell Testing at Forschungszentrum Juelich

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/136135
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorV. A. C. Haanappel
    contributor authorM. J. Smith
    date accessioned2017-05-09T00:24:27Z
    date available2017-05-09T00:24:27Z
    date copyrightMay, 2007
    date issued2007
    identifier issn2381-6872
    identifier otherJFCSAU-28929#194_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/136135
    description abstractStandardization of fuel cell testing to allow comparisons presents one of the major challenges to the fuel cell community. This becomes more critical when there is a need to take commercial decisions on the direction of the technology. One part of the development toward such standardization is the formalization of what measurements are made and how they are made, including the control of external and environmental parameters. This presentation details some of the elements of the standardized measuring system in place at Forschungszentrum Jülich (FZJ) and explains some of the rationale behind this system. The established measurement system adopts many of the principles employed by generic international quality assurance standards and commercial organizations. An analysis of the testing process identifies critical control points, e.g., those parameters that must be controlled to ensure internally consistent test results and repeatability. The FZJ solid oxide fuel cell (SOFC) testing process is illustrated by means of a flowchart. This chart details critical control points and shows how the parameter measurements are documented in a systematic fashion. Specific examples are given of SOFC test data to illustrate how FZJ determined some of the critical control parameter values used in our testing, those included are the effects of Ni-cermet reduction temperature, the effect of the chosen time intervals between individual I-V measurement points, and finally, the effect of the hydrogen flow rate. Standardization within the SOFC community can prove a contentious issue, but whatever standard test parameters are finally chosen by the community, to allow comparison of SOFC options organizations will have a need to introduce a well-designed, controlled, and formalized measurement system. We have found that adopting a generic QA systems approach has been successful internally and recommend this option to other organizations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleQuality Assurance and Solid Oxide Fuel Cell Testing at Forschungszentrum Juelich
    typeJournal Paper
    journal volume4
    journal issue2
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.2713782
    journal fristpage194
    journal lastpage202
    identifier eissn2381-6910
    keywordsMeasurement
    keywordsSolid oxide fuel cells
    keywordsTesting
    keywordsTemperature AND Quality control
    treeJournal of Fuel Cell Science and Technology:;2007:;volume( 004 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian