YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurement Techniques for the Inspection of Porosity Flaws on Machined Surfaces

    Source: Journal of Computing and Information Science in Engineering:;2007:;volume( 007 ):;issue: 001::page 85
    Author:
    D. Steiner
    ,
    R. Katz
    DOI: 10.1115/1.2424244
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Continuous improvement of product quality is essential to the success of manufacturing enterprises. In-process inspection plays an important role in improving product quality control of mass produced products. The change that has occurred in traditional mass production, i.e., the change from dedicated manufacturing to reconfigurable and flexible manufacturing, has increased the demand for computer integrated manufacturing (CIM). Automated inspection serves as a key component of CIM, for example, detecting and measuring surface flaws. Today, inspection of surface flaws is mainly performed on sheet metal, paper, glass, rags, etc. These objects are flat in nature and do not include 3D features or edges of features. However, structural parts which are produced using casting process are complicated and are composed of a large number of features. When these parts are machined (flat milled) porosity defects arise in addition to surface flaws such as scratches and texture defects. Porosity defects arise on the surface when the cutting tool cuts through an air bubble (pore void) created during casting. In many applications, inspection and accurate measurement of porosity flaws, within the capabilities of the measuring device, is essential and crucial to determine the ability of the product to function well. In this paper we present a technique for measuring the correct size of a pore using a low value threshold, to avoid false detection, miss detection and underestimation of pore size. Also we present two algorithms for detecting edge-connected pores which are pores on the edge of features. Detection is done without the use of a feature data base. One of the edge-connected pore detection algorithms uses basic morphological operations for determining the locations of the pores, while the other algorithm uses curve analysis for the same purpose. The feasibility of the proposed porosity measurement technique and edge-connected pore detection algorithms is demonstrated and validated on the joint face of an engine cylinder head.
    • Download: (1.646Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurement Techniques for the Inspection of Porosity Flaws on Machined Surfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135404
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorD. Steiner
    contributor authorR. Katz
    date accessioned2017-05-09T00:23:05Z
    date available2017-05-09T00:23:05Z
    date copyrightMarch, 2007
    date issued2007
    identifier issn1530-9827
    identifier otherJCISB6-25972#85_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135404
    description abstractContinuous improvement of product quality is essential to the success of manufacturing enterprises. In-process inspection plays an important role in improving product quality control of mass produced products. The change that has occurred in traditional mass production, i.e., the change from dedicated manufacturing to reconfigurable and flexible manufacturing, has increased the demand for computer integrated manufacturing (CIM). Automated inspection serves as a key component of CIM, for example, detecting and measuring surface flaws. Today, inspection of surface flaws is mainly performed on sheet metal, paper, glass, rags, etc. These objects are flat in nature and do not include 3D features or edges of features. However, structural parts which are produced using casting process are complicated and are composed of a large number of features. When these parts are machined (flat milled) porosity defects arise in addition to surface flaws such as scratches and texture defects. Porosity defects arise on the surface when the cutting tool cuts through an air bubble (pore void) created during casting. In many applications, inspection and accurate measurement of porosity flaws, within the capabilities of the measuring device, is essential and crucial to determine the ability of the product to function well. In this paper we present a technique for measuring the correct size of a pore using a low value threshold, to avoid false detection, miss detection and underestimation of pore size. Also we present two algorithms for detecting edge-connected pores which are pores on the edge of features. Detection is done without the use of a feature data base. One of the edge-connected pore detection algorithms uses basic morphological operations for determining the locations of the pores, while the other algorithm uses curve analysis for the same purpose. The feasibility of the proposed porosity measurement technique and edge-connected pore detection algorithms is demonstrated and validated on the joint face of an engine cylinder head.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurement Techniques for the Inspection of Porosity Flaws on Machined Surfaces
    typeJournal Paper
    journal volume7
    journal issue1
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.2424244
    journal fristpage85
    journal lastpage94
    identifier eissn1530-9827
    treeJournal of Computing and Information Science in Engineering:;2007:;volume( 007 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian