YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Change in Properties of the Glycocalyx Affects the Shear Rate and Stress Distribution on Endothelial Cells

    Source: Journal of Biomechanical Engineering:;2007:;volume( 129 ):;issue: 003::page 324
    Author:
    Wen Wang
    DOI: 10.1115/1.2720909
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The endothelial glycocalyx mediates interactions between the blood flow and the endothelium. This study aims to evaluate, quantitatively, effects of structural change of the glycocalyx on stress distribution and shear rate on endothelial cells. In the study, the endothelial glycocalyx is modeled as a surface layer of fiber matrix and when exposed to laminar shear flow, the matrix deforms. Fluid velocity and stress distribution inside the matrix and on cell membranes are studied based on a binary mixture theory. Parameters, such as the height and porosity of the matrix and the drag coefficient between fluid and matrix fibrils, are based on available data and estimation from experiments. Simple theoretical solutions are achieved for fluid velocity and stress distribution in the surface matrix. Degradation of the matrix, e.g., by enzyme digestion, is represented by reductions in the volume fraction of fibrils, height, and drag coefficient. From a force balance, total stress on endothelial surface remains constant regardless of structural alteration of the glycocalyx. However, the stress that is transmitted to endothelial cells by direct “pulling” of fiber branches of the glycocalyx is reduced significantly. Fluid shear rate at the cell membrane, on the other hand, increases. The study gives quantitative insight into the effect of the structural change of the glycocalyx on the shear rate and pulling stress on the endothelium. Results can be used to interpret experiments on effects of the glycocalyx in shear induced endothelial responses.
    keyword(s): Drag (Fluid dynamics) , Stress , Shear (Mechanics) , Stress concentration , Fluids , Endothelial cells , Porosity AND Fibers ,
    • Download: (159.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Change in Properties of the Glycocalyx Affects the Shear Rate and Stress Distribution on Endothelial Cells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135250
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorWen Wang
    date accessioned2017-05-09T00:22:46Z
    date available2017-05-09T00:22:46Z
    date copyrightJune, 2007
    date issued2007
    identifier issn0148-0731
    identifier otherJBENDY-26706#324_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135250
    description abstractThe endothelial glycocalyx mediates interactions between the blood flow and the endothelium. This study aims to evaluate, quantitatively, effects of structural change of the glycocalyx on stress distribution and shear rate on endothelial cells. In the study, the endothelial glycocalyx is modeled as a surface layer of fiber matrix and when exposed to laminar shear flow, the matrix deforms. Fluid velocity and stress distribution inside the matrix and on cell membranes are studied based on a binary mixture theory. Parameters, such as the height and porosity of the matrix and the drag coefficient between fluid and matrix fibrils, are based on available data and estimation from experiments. Simple theoretical solutions are achieved for fluid velocity and stress distribution in the surface matrix. Degradation of the matrix, e.g., by enzyme digestion, is represented by reductions in the volume fraction of fibrils, height, and drag coefficient. From a force balance, total stress on endothelial surface remains constant regardless of structural alteration of the glycocalyx. However, the stress that is transmitted to endothelial cells by direct “pulling” of fiber branches of the glycocalyx is reduced significantly. Fluid shear rate at the cell membrane, on the other hand, increases. The study gives quantitative insight into the effect of the structural change of the glycocalyx on the shear rate and pulling stress on the endothelium. Results can be used to interpret experiments on effects of the glycocalyx in shear induced endothelial responses.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleChange in Properties of the Glycocalyx Affects the Shear Rate and Stress Distribution on Endothelial Cells
    typeJournal Paper
    journal volume129
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2720909
    journal fristpage324
    journal lastpage329
    identifier eissn1528-8951
    keywordsDrag (Fluid dynamics)
    keywordsStress
    keywordsShear (Mechanics)
    keywordsStress concentration
    keywordsFluids
    keywordsEndothelial cells
    keywordsPorosity AND Fibers
    treeJournal of Biomechanical Engineering:;2007:;volume( 129 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian