YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Situ Deformation of the Aortic Valve Interstitial Cell Nucleus Under Diastolic Loading

    Source: Journal of Biomechanical Engineering:;2007:;volume( 129 ):;issue: 006::page 880
    Author:
    Hsiao-Ying Shadow Huang
    ,
    Jun Liao
    ,
    Michael S. Sacks
    DOI: 10.1115/1.2801670
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Within the aortic valve (AV) leaflet resides a population of interstitial cells (AVICs), which serve to maintain tissue structural integrity via protein synthesis and enzymatic degradation. AVICs are typically characterized as myofibroblasts, exhibit phenotypic plasticity, and may play an important role in valve pathophysiology. While it is known that AVICs can respond to mechanical stimuli in vitro, the level of in vivo AVIC deformation and its relation to local collagen fiber reorientation during the cardiac cycle remain unknown. In the present study, the deformation of AVICs was investigated using porcine AV glutaraldehyde fixed under 0–90mmHg transvalvular pressures. The resulting change in nuclear aspect ratio (NAR) was used as an index of overall cellular strain, and dependencies on spatial location and pressure loading levels quantified. Local collagen fiber alignment in the same valves was also quantified using small angle light scattering. A tissue-level finite element (FE) model of an AVIC embedded in the AV extracellular matrix was also used explore the relation between AV tissue- and cellular-level deformations. Results indicated large, consistent increases in AVIC NAR with transvalvular pressure (e.g., from mean of 1.8 at 0mmHg to a mean of 4.8 at 90mmHg), as well as pronounced layer specific dependencies. Associated changes in collagen fiber alignment indicated that little AVIC deformation occurs with the large amount of fiber straightening for pressures below ∼1mmHg, followed by substantial increases in AVIC NAR from 4mmHgto90mmHg. While the tissue-level FE model was able to capture the qualitative response, it also underpredicted the extent of AVIC deformation. This result suggested that additional micromechanical and fiber-compaction effects occur at high pressure levels. The results of this study form the basis of understanding transvalvular pressure-mediated mechanotransduction within the native AV and first time quantitative data correlating AVIC nuclei deformation with AV tissue microstructure and deformation.
    keyword(s): Deformation , Fibers , Biological tissues , Valves , Pressure , Finite element analysis , Finite element model AND Engineering simulation ,
    • Download: (929.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Situ Deformation of the Aortic Valve Interstitial Cell Nucleus Under Diastolic Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135195
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorHsiao-Ying Shadow Huang
    contributor authorJun Liao
    contributor authorMichael S. Sacks
    date accessioned2017-05-09T00:22:40Z
    date available2017-05-09T00:22:40Z
    date copyrightDecember, 2007
    date issued2007
    identifier issn0148-0731
    identifier otherJBENDY-26773#880_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135195
    description abstractWithin the aortic valve (AV) leaflet resides a population of interstitial cells (AVICs), which serve to maintain tissue structural integrity via protein synthesis and enzymatic degradation. AVICs are typically characterized as myofibroblasts, exhibit phenotypic plasticity, and may play an important role in valve pathophysiology. While it is known that AVICs can respond to mechanical stimuli in vitro, the level of in vivo AVIC deformation and its relation to local collagen fiber reorientation during the cardiac cycle remain unknown. In the present study, the deformation of AVICs was investigated using porcine AV glutaraldehyde fixed under 0–90mmHg transvalvular pressures. The resulting change in nuclear aspect ratio (NAR) was used as an index of overall cellular strain, and dependencies on spatial location and pressure loading levels quantified. Local collagen fiber alignment in the same valves was also quantified using small angle light scattering. A tissue-level finite element (FE) model of an AVIC embedded in the AV extracellular matrix was also used explore the relation between AV tissue- and cellular-level deformations. Results indicated large, consistent increases in AVIC NAR with transvalvular pressure (e.g., from mean of 1.8 at 0mmHg to a mean of 4.8 at 90mmHg), as well as pronounced layer specific dependencies. Associated changes in collagen fiber alignment indicated that little AVIC deformation occurs with the large amount of fiber straightening for pressures below ∼1mmHg, followed by substantial increases in AVIC NAR from 4mmHgto90mmHg. While the tissue-level FE model was able to capture the qualitative response, it also underpredicted the extent of AVIC deformation. This result suggested that additional micromechanical and fiber-compaction effects occur at high pressure levels. The results of this study form the basis of understanding transvalvular pressure-mediated mechanotransduction within the native AV and first time quantitative data correlating AVIC nuclei deformation with AV tissue microstructure and deformation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIn-Situ Deformation of the Aortic Valve Interstitial Cell Nucleus Under Diastolic Loading
    typeJournal Paper
    journal volume129
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2801670
    journal fristpage880
    journal lastpage889
    identifier eissn1528-8951
    keywordsDeformation
    keywordsFibers
    keywordsBiological tissues
    keywordsValves
    keywordsPressure
    keywordsFinite element analysis
    keywordsFinite element model AND Engineering simulation
    treeJournal of Biomechanical Engineering:;2007:;volume( 129 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian