YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    •   YE&T Library
    • ASME
    • Applied Mechanics Reviews
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integral Equation Methods for Multiple Crack Problems and Related Topics

    Source: Applied Mechanics Reviews:;2007:;volume( 060 ):;issue: 004::page 172
    Author:
    Y. Z. Chen
    DOI: 10.1115/1.2750671
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The content of this review consists of recent developments covering an advanced treatment of multiple crack problems in plane elasticity. Several elementary solutions are highlighted, which are the fundamentals for the formulation of the integral equations. The elementary solutions include those initiated by point sources or by a distributed traction along the crack face. Two kinds of singular integral equations, three kinds of Fredholm integral equations, and one kind of hypersingular integral equation are suggested for the multiple crack problems in plane elasticity. Regularization procedures are also investigated. For the solution of the integral equations, the relevant quadrature rules are addressed. A variety of methods for solving the multiple crack problems is introduced. Applications for the solution of the multiple crack problems are also addressed. The concept of the modified complex potential (MCP) is emphasized, which will extend the solution range, for example, from the multiple crack problem in an infinite plate to that in a circular plate. Many multiple crack problems are addressed. Those problems include: (i) multiple semi-infinite crack problem, (ii) multiple crack problem with a general loading, (iii) multiple crack problem for the bonded half-planes, (iv) multiple crack problem for a finite region, (v) multiple crack problem for a circular region, (vi) multiple crack problem in antiplane elasticity, (vii) T-stress in the multiple crack problem, and (viii) periodic crack problem and many others. This review article cites 187 references.
    keyword(s): Fracture (Materials) AND Integral equations ,
    • Download: (637.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integral Equation Methods for Multiple Crack Problems and Related Topics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/135002
    Collections
    • Applied Mechanics Reviews

    Show full item record

    contributor authorY. Z. Chen
    date accessioned2017-05-09T00:22:19Z
    date available2017-05-09T00:22:19Z
    date copyrightJuly, 2007
    date issued2007
    identifier issn0003-6900
    identifier otherAMREAD-25881#172_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/135002
    description abstractThe content of this review consists of recent developments covering an advanced treatment of multiple crack problems in plane elasticity. Several elementary solutions are highlighted, which are the fundamentals for the formulation of the integral equations. The elementary solutions include those initiated by point sources or by a distributed traction along the crack face. Two kinds of singular integral equations, three kinds of Fredholm integral equations, and one kind of hypersingular integral equation are suggested for the multiple crack problems in plane elasticity. Regularization procedures are also investigated. For the solution of the integral equations, the relevant quadrature rules are addressed. A variety of methods for solving the multiple crack problems is introduced. Applications for the solution of the multiple crack problems are also addressed. The concept of the modified complex potential (MCP) is emphasized, which will extend the solution range, for example, from the multiple crack problem in an infinite plate to that in a circular plate. Many multiple crack problems are addressed. Those problems include: (i) multiple semi-infinite crack problem, (ii) multiple crack problem with a general loading, (iii) multiple crack problem for the bonded half-planes, (iv) multiple crack problem for a finite region, (v) multiple crack problem for a circular region, (vi) multiple crack problem in antiplane elasticity, (vii) T-stress in the multiple crack problem, and (viii) periodic crack problem and many others. This review article cites 187 references.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIntegral Equation Methods for Multiple Crack Problems and Related Topics
    typeJournal Paper
    journal volume60
    journal issue4
    journal titleApplied Mechanics Reviews
    identifier doi10.1115/1.2750671
    journal fristpage172
    journal lastpage194
    identifier eissn0003-6900
    keywordsFracture (Materials) AND Integral equations
    treeApplied Mechanics Reviews:;2007:;volume( 060 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian