Integral Equation Methods for Multiple Crack Problems and Related TopicsSource: Applied Mechanics Reviews:;2007:;volume( 060 ):;issue: 004::page 172Author:Y. Z. Chen
DOI: 10.1115/1.2750671Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The content of this review consists of recent developments covering an advanced treatment of multiple crack problems in plane elasticity. Several elementary solutions are highlighted, which are the fundamentals for the formulation of the integral equations. The elementary solutions include those initiated by point sources or by a distributed traction along the crack face. Two kinds of singular integral equations, three kinds of Fredholm integral equations, and one kind of hypersingular integral equation are suggested for the multiple crack problems in plane elasticity. Regularization procedures are also investigated. For the solution of the integral equations, the relevant quadrature rules are addressed. A variety of methods for solving the multiple crack problems is introduced. Applications for the solution of the multiple crack problems are also addressed. The concept of the modified complex potential (MCP) is emphasized, which will extend the solution range, for example, from the multiple crack problem in an infinite plate to that in a circular plate. Many multiple crack problems are addressed. Those problems include: (i) multiple semi-infinite crack problem, (ii) multiple crack problem with a general loading, (iii) multiple crack problem for the bonded half-planes, (iv) multiple crack problem for a finite region, (v) multiple crack problem for a circular region, (vi) multiple crack problem in antiplane elasticity, (vii) T-stress in the multiple crack problem, and (viii) periodic crack problem and many others. This review article cites 187 references.
keyword(s): Fracture (Materials) AND Integral equations ,
|
Collections
Show full item record
contributor author | Y. Z. Chen | |
date accessioned | 2017-05-09T00:22:19Z | |
date available | 2017-05-09T00:22:19Z | |
date copyright | July, 2007 | |
date issued | 2007 | |
identifier issn | 0003-6900 | |
identifier other | AMREAD-25881#172_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/135002 | |
description abstract | The content of this review consists of recent developments covering an advanced treatment of multiple crack problems in plane elasticity. Several elementary solutions are highlighted, which are the fundamentals for the formulation of the integral equations. The elementary solutions include those initiated by point sources or by a distributed traction along the crack face. Two kinds of singular integral equations, three kinds of Fredholm integral equations, and one kind of hypersingular integral equation are suggested for the multiple crack problems in plane elasticity. Regularization procedures are also investigated. For the solution of the integral equations, the relevant quadrature rules are addressed. A variety of methods for solving the multiple crack problems is introduced. Applications for the solution of the multiple crack problems are also addressed. The concept of the modified complex potential (MCP) is emphasized, which will extend the solution range, for example, from the multiple crack problem in an infinite plate to that in a circular plate. Many multiple crack problems are addressed. Those problems include: (i) multiple semi-infinite crack problem, (ii) multiple crack problem with a general loading, (iii) multiple crack problem for the bonded half-planes, (iv) multiple crack problem for a finite region, (v) multiple crack problem for a circular region, (vi) multiple crack problem in antiplane elasticity, (vii) T-stress in the multiple crack problem, and (viii) periodic crack problem and many others. This review article cites 187 references. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Integral Equation Methods for Multiple Crack Problems and Related Topics | |
type | Journal Paper | |
journal volume | 60 | |
journal issue | 4 | |
journal title | Applied Mechanics Reviews | |
identifier doi | 10.1115/1.2750671 | |
journal fristpage | 172 | |
journal lastpage | 194 | |
identifier eissn | 0003-6900 | |
keywords | Fracture (Materials) AND Integral equations | |
tree | Applied Mechanics Reviews:;2007:;volume( 060 ):;issue: 004 | |
contenttype | Fulltext |