YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rotordynamic-Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short, Laminar-flow Annular Seals

    Source: Journal of Tribology:;2006:;volume( 128 ):;issue: 002::page 378
    Author:
    Dara W. Childs
    ,
    Luis E. Rodriguez
    ,
    Vito Cullotta
    ,
    Adnan Al-Ghasem
    ,
    Matthew Graviss
    DOI: 10.1115/1.2164468
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Test results are presented for laminar-flow seals that are representative of buffered-flow oil seals in centrifugal compressors. The seals are short (L∕D≅0.21), with a diameter of 117mm and a clearance-to-radius ratio 0.0007. A smooth seal, a seal with one central groove, and a seal with three grooves were tested. Groove geometries employed are representative of industrial practice for compressors with a groove-depth to clearance ratio on the order of 6. Tests were conducted at 4000, 7000, and 10,000rpm shaft speed with delta pressures across the seals of 21, 45, and 69bars. For all cases, the flow was laminar. The seals were tested from a centered position out to an eccentricity ratio of 0.7. Static data included leakage and equilibrium loci for a range of loads. Direct and cross-coupled stiffness and damping coefficients and direct mass coefficients were determined from dynamic tests. For the smooth seal, comparisons between measurements and predictions were reasonable for the direct and cross-coupled stiffness and damping coefficients; however, measured added mass coefficients were roughly ten times larger than predicted. Predictions for the grooved seals from a “deep-groove” model that assumed zero pressure oscillations in the grooves greatly over predicted the influence of the grooves. In a centered position, smooth and grooved seals had comparable leakage performance. At higher eccentricity ratios, the grooved seals leaked modestly more. For eccentricity ratios less than approximately 0.3, the grooved seals and the smooth seal had qualitatively similar static and dynamic characteristics. In terms of cross-coupled stiffness coefficients, the grooved seals were less stable than the smooth seal at eccentricity ratios greater than approximately 0.5 but had significantly lower cross-coupled coefficients at reduced eccentricity ratios between zero and 0.3. A grooved centered seal is more stable than a smooth centered seal. The smooth seal had higher damping than the grooved seals and had moderately better centering capabilities.
    • Download: (1.553Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rotordynamic-Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short, Laminar-flow Annular Seals

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/134750
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorDara W. Childs
    contributor authorLuis E. Rodriguez
    contributor authorVito Cullotta
    contributor authorAdnan Al-Ghasem
    contributor authorMatthew Graviss
    date accessioned2017-05-09T00:21:48Z
    date available2017-05-09T00:21:48Z
    date copyrightApril, 2006
    date issued2006
    identifier issn0742-4787
    identifier otherJOTRE9-28740#378_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134750
    description abstractTest results are presented for laminar-flow seals that are representative of buffered-flow oil seals in centrifugal compressors. The seals are short (L∕D≅0.21), with a diameter of 117mm and a clearance-to-radius ratio 0.0007. A smooth seal, a seal with one central groove, and a seal with three grooves were tested. Groove geometries employed are representative of industrial practice for compressors with a groove-depth to clearance ratio on the order of 6. Tests were conducted at 4000, 7000, and 10,000rpm shaft speed with delta pressures across the seals of 21, 45, and 69bars. For all cases, the flow was laminar. The seals were tested from a centered position out to an eccentricity ratio of 0.7. Static data included leakage and equilibrium loci for a range of loads. Direct and cross-coupled stiffness and damping coefficients and direct mass coefficients were determined from dynamic tests. For the smooth seal, comparisons between measurements and predictions were reasonable for the direct and cross-coupled stiffness and damping coefficients; however, measured added mass coefficients were roughly ten times larger than predicted. Predictions for the grooved seals from a “deep-groove” model that assumed zero pressure oscillations in the grooves greatly over predicted the influence of the grooves. In a centered position, smooth and grooved seals had comparable leakage performance. At higher eccentricity ratios, the grooved seals leaked modestly more. For eccentricity ratios less than approximately 0.3, the grooved seals and the smooth seal had qualitatively similar static and dynamic characteristics. In terms of cross-coupled stiffness coefficients, the grooved seals were less stable than the smooth seal at eccentricity ratios greater than approximately 0.5 but had significantly lower cross-coupled coefficients at reduced eccentricity ratios between zero and 0.3. A grooved centered seal is more stable than a smooth centered seal. The smooth seal had higher damping than the grooved seals and had moderately better centering capabilities.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRotordynamic-Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short, Laminar-flow Annular Seals
    typeJournal Paper
    journal volume128
    journal issue2
    journal titleJournal of Tribology
    identifier doi10.1115/1.2164468
    journal fristpage378
    journal lastpage387
    identifier eissn1528-8897
    treeJournal of Tribology:;2006:;volume( 128 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian