YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assembly of Compound Tubes Under Hydraulic Pressure

    Source: Journal of Pressure Vessel Technology:;2006:;volume( 128 ):;issue: 002::page 208
    Author:
    Tony D. Andrews
    DOI: 10.1115/1.2172960
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes a method for inserting a tapered liner into a sleeve while the latter is expanded by hydraulic pressure. The technique avoids many of the limitations associated with traditional shrink fit techniques and autofrettage. The sleeve and liner are manufactured with internal and external tapers, respectively, to give the appropriate interference for the finished compound tube. The liner is mounted on a rod and positioned loosely inside the sleeve. The ends of the sleeve are sealed with plugs, which allow the rod to protrude through each end and which also have hydraulic oil inlets. Once the assembly has been pressurized, the rod is pushed into the vessel to move the liner further into the sleeve generating an interference once the pressure in the sleeve is removed. Insertion of a relatively thin liner can generate high residual compressive stresses at the bore, similar to autofrettage but with a shallower gradient away from the bore. Because the liner is not subjected to plastic strain during manufacture, there is no reduction in compressive strength due to the Bauschinger effect and the maximum compressive stress obtainable is greater than that from traditional autofrettage routes. Such high stresses lead to excess tension in the sleeve, which must be reduced by autofrettaging the sleeve prior to assembly of the compound tube. Such a configuration is suitable for inserting a part-length liner at the chamber for strength and/or wear resistance and tensile stresses can be eliminated to prevent failure of brittle materials, such as ceramics.
    keyword(s): Pressure , Manufacturing , Stress , Autofrettage , Tension AND Vessels ,
    • Download: (426.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assembly of Compound Tubes Under Hydraulic Pressure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/134529
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorTony D. Andrews
    date accessioned2017-05-09T00:21:24Z
    date available2017-05-09T00:21:24Z
    date copyrightMay, 2006
    date issued2006
    identifier issn0094-9930
    identifier otherJPVTAS-28467#208_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134529
    description abstractThis paper describes a method for inserting a tapered liner into a sleeve while the latter is expanded by hydraulic pressure. The technique avoids many of the limitations associated with traditional shrink fit techniques and autofrettage. The sleeve and liner are manufactured with internal and external tapers, respectively, to give the appropriate interference for the finished compound tube. The liner is mounted on a rod and positioned loosely inside the sleeve. The ends of the sleeve are sealed with plugs, which allow the rod to protrude through each end and which also have hydraulic oil inlets. Once the assembly has been pressurized, the rod is pushed into the vessel to move the liner further into the sleeve generating an interference once the pressure in the sleeve is removed. Insertion of a relatively thin liner can generate high residual compressive stresses at the bore, similar to autofrettage but with a shallower gradient away from the bore. Because the liner is not subjected to plastic strain during manufacture, there is no reduction in compressive strength due to the Bauschinger effect and the maximum compressive stress obtainable is greater than that from traditional autofrettage routes. Such high stresses lead to excess tension in the sleeve, which must be reduced by autofrettaging the sleeve prior to assembly of the compound tube. Such a configuration is suitable for inserting a part-length liner at the chamber for strength and/or wear resistance and tensile stresses can be eliminated to prevent failure of brittle materials, such as ceramics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssembly of Compound Tubes Under Hydraulic Pressure
    typeJournal Paper
    journal volume128
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.2172960
    journal fristpage208
    journal lastpage211
    identifier eissn1528-8978
    keywordsPressure
    keywordsManufacturing
    keywordsStress
    keywordsAutofrettage
    keywordsTension AND Vessels
    treeJournal of Pressure Vessel Technology:;2006:;volume( 128 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian