YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effective Product Family Design Using Preference Aggregation

    Source: Journal of Mechanical Design:;2006:;volume( 128 ):;issue: 004::page 659
    Author:
    Zhihuang Dai
    ,
    Michael J. Scott
    DOI: 10.1115/1.2197835
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The development of product families, groups of products that share a common platform, is one way to provide product variety while keeping design and production costs low. The design of a product platform can be formulated as a multicriteria optimization problem in which the performances of individual products trade off against each other and against the objective of platform standardization. The problem is often solved in two stages: one to determine the values of the shared platform variables and a second to optimize the product family members with respect to specific targets. In the first stage, it is common to target the mean and variability of performance when fixing the values of platform variables. This paper contributes three new methods for platform development. The new methods are demonstrated on an electric motor example from the platform design literature, and the results are compared to those from existing methods. First, a preference aggregation method is applied to aggregate the multiple objectives into a single overall objective function. On the example problem, this approach gives superior results to existing techniques. Second, an alternative method that targets the minimum and maximum of the range of performance across the platform, instead of the mean and standard deviation, is proposed and shown to succeed where the existing method may fail. Third, a single-stage optimization approach which solves for both platform and nonplatform variables in a single pass is presented. This method delivers notably superior performance on the example problem but will, in general, incur greater computational expense.
    keyword(s): Design , Engines , Optimization AND Functions ,
    • Download: (131.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effective Product Family Design Using Preference Aggregation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/134283
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorZhihuang Dai
    contributor authorMichael J. Scott
    date accessioned2017-05-09T00:20:55Z
    date available2017-05-09T00:20:55Z
    date copyrightJuly, 2006
    date issued2006
    identifier issn1050-0472
    identifier otherJMDEDB-27829#659_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134283
    description abstractThe development of product families, groups of products that share a common platform, is one way to provide product variety while keeping design and production costs low. The design of a product platform can be formulated as a multicriteria optimization problem in which the performances of individual products trade off against each other and against the objective of platform standardization. The problem is often solved in two stages: one to determine the values of the shared platform variables and a second to optimize the product family members with respect to specific targets. In the first stage, it is common to target the mean and variability of performance when fixing the values of platform variables. This paper contributes three new methods for platform development. The new methods are demonstrated on an electric motor example from the platform design literature, and the results are compared to those from existing methods. First, a preference aggregation method is applied to aggregate the multiple objectives into a single overall objective function. On the example problem, this approach gives superior results to existing techniques. Second, an alternative method that targets the minimum and maximum of the range of performance across the platform, instead of the mean and standard deviation, is proposed and shown to succeed where the existing method may fail. Third, a single-stage optimization approach which solves for both platform and nonplatform variables in a single pass is presented. This method delivers notably superior performance on the example problem but will, in general, incur greater computational expense.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffective Product Family Design Using Preference Aggregation
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.2197835
    journal fristpage659
    journal lastpage667
    identifier eissn1528-9001
    keywordsDesign
    keywordsEngines
    keywordsOptimization AND Functions
    treeJournal of Mechanical Design:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian