YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling of Cutting Temperature in Near Dry Machining

    Source: Journal of Manufacturing Science and Engineering:;2006:;volume( 128 ):;issue: 002::page 416
    Author:
    Kuan-Ming Li
    ,
    Steven Y. Liang
    DOI: 10.1115/1.2162907
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Near dry machining refers to the condition of applying cutting fluid at relatively low flow rates, on the order of 2–100ml∕h, as opposed to the conventional way of using either a large quantity, typically of about 10l∕min, as in wet machining; or no fluid at all, as in dry machining. One important expectation of applying fluids is to control the cutting temperature, which is an important parameter for tool life and part dimensional accuracy in machining processes. In this context, the understanding of cutting temperature variation corresponding to the near dry cooling and lubrication is of interest. This paper models the temperature distributions in the cutting zone under through-the-tool near dry cooling condition. The heat source method is implemented to estimate the cutting temperatures on the tool-chip interface and the tool-workpiece interface. For the temperature rise in the chip, the effects of the primary heat source and the secondary heat source were modeled as moving heat sources. For the temperature rise in the tool, the effects of the secondary heat source, the heat loss due to cooling, and the rubbing heat source due to the tool flank wear, were modeled as stationary heat sources. For the temperature rise in the workpiece, the primary heat source, the heat loss due to cooling, and the rubbing heat source due to the tool flank wear were modeled as moving heat sources. The model describes the dual effects of air-oil mixture in near dry machining in terms of the reduction of cutting temperature through the cooling effect, as well as the reduction of heat generation through the lubricating effect. To pursue model calibration and validation, embedded thermocouple temperature measurement in cutting medium carbon steels with uncoated carbide insets were carried out. The model predictions and experimental measurements show reasonable agreement and results suggest that the combination of the cooling and the lubricating effects in near dry machining reduces the cutting temperatures on the tool-chip interface by about 8% with respect to dry machining. Moreover, the cutting speed remains a dominant factor in cutting temperature compared with the feed and the depth of cut in near dry machining processes.
    keyword(s): Temperature , Cutting , Heat AND Machining ,
    • Download: (278.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling of Cutting Temperature in Near Dry Machining

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/134159
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorKuan-Ming Li
    contributor authorSteven Y. Liang
    date accessioned2017-05-09T00:20:44Z
    date available2017-05-09T00:20:44Z
    date copyrightMay, 2006
    date issued2006
    identifier issn1087-1357
    identifier otherJMSEFK-27941#416_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134159
    description abstractNear dry machining refers to the condition of applying cutting fluid at relatively low flow rates, on the order of 2–100ml∕h, as opposed to the conventional way of using either a large quantity, typically of about 10l∕min, as in wet machining; or no fluid at all, as in dry machining. One important expectation of applying fluids is to control the cutting temperature, which is an important parameter for tool life and part dimensional accuracy in machining processes. In this context, the understanding of cutting temperature variation corresponding to the near dry cooling and lubrication is of interest. This paper models the temperature distributions in the cutting zone under through-the-tool near dry cooling condition. The heat source method is implemented to estimate the cutting temperatures on the tool-chip interface and the tool-workpiece interface. For the temperature rise in the chip, the effects of the primary heat source and the secondary heat source were modeled as moving heat sources. For the temperature rise in the tool, the effects of the secondary heat source, the heat loss due to cooling, and the rubbing heat source due to the tool flank wear, were modeled as stationary heat sources. For the temperature rise in the workpiece, the primary heat source, the heat loss due to cooling, and the rubbing heat source due to the tool flank wear were modeled as moving heat sources. The model describes the dual effects of air-oil mixture in near dry machining in terms of the reduction of cutting temperature through the cooling effect, as well as the reduction of heat generation through the lubricating effect. To pursue model calibration and validation, embedded thermocouple temperature measurement in cutting medium carbon steels with uncoated carbide insets were carried out. The model predictions and experimental measurements show reasonable agreement and results suggest that the combination of the cooling and the lubricating effects in near dry machining reduces the cutting temperatures on the tool-chip interface by about 8% with respect to dry machining. Moreover, the cutting speed remains a dominant factor in cutting temperature compared with the feed and the depth of cut in near dry machining processes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling of Cutting Temperature in Near Dry Machining
    typeJournal Paper
    journal volume128
    journal issue2
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2162907
    journal fristpage416
    journal lastpage424
    identifier eissn1528-8935
    keywordsTemperature
    keywordsCutting
    keywordsHeat AND Machining
    treeJournal of Manufacturing Science and Engineering:;2006:;volume( 128 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian