YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations

    Source: Journal of Manufacturing Science and Engineering:;2006:;volume( 128 ):;issue: 003::page 749
    Author:
    Y. B. Guo
    ,
    Q. Wen
    ,
    K. A. Woodbury
    DOI: 10.1115/1.2193549
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Work materials experience large strains, high strain rates, high temperatures, and complex loading histories in machining. The problem of how to accurately model dynamic material behavior, including the adiabatic effect is essential to understand a hard machining process. Several conventional constitutive models have often been used to approximate flow stress in machining analysis and simulations. The empirical or semiempirical conventional models lack mechanisms for incorporating isotropic/kinematic hardening, recovery, and loading history effects. In this study, the material constants of AISI 52100 steel (62 HRc) were determined for both the Internal State Variable (ISV) plasticity model and the conventional Johnson-Cook (JC) model. The material constants were obtained by fitting the ISV and JC models using nonlinear least square methods to same baseline test data at different strains, strain rates, and temperatures. Both models are capable of modeling strain hardening and thermal softening phenomena. However, the ISV model can also accommodate the adiabatic and recovery effects, while the JC model is isothermal. Based on the method of design of experiment, FEA simulations and corresponding cutting tests were performed using the cutting tool with a 20 deg chamfer angle. The predicted chip morphology using the ISV model is consistent with the measured chips, while the JC model is not. The predicted temperatures can be qualitatively verified by the subsurface microstructure. In addition, the ISV model gave larger subsurface von Mises stress, plastic strain, and temperature compared with those by the JC model.
    keyword(s): Temperature , Machining , Stress , Engineering simulation , Cutting , Plasticity , Modeling , Flow (Dynamics) , Deformation AND Finite element analysis ,
    • Download: (1.095Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/134148
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorY. B. Guo
    contributor authorQ. Wen
    contributor authorK. A. Woodbury
    date accessioned2017-05-09T00:20:43Z
    date available2017-05-09T00:20:43Z
    date copyrightAugust, 2006
    date issued2006
    identifier issn1087-1357
    identifier otherJMSEFK-27953#749_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134148
    description abstractWork materials experience large strains, high strain rates, high temperatures, and complex loading histories in machining. The problem of how to accurately model dynamic material behavior, including the adiabatic effect is essential to understand a hard machining process. Several conventional constitutive models have often been used to approximate flow stress in machining analysis and simulations. The empirical or semiempirical conventional models lack mechanisms for incorporating isotropic/kinematic hardening, recovery, and loading history effects. In this study, the material constants of AISI 52100 steel (62 HRc) were determined for both the Internal State Variable (ISV) plasticity model and the conventional Johnson-Cook (JC) model. The material constants were obtained by fitting the ISV and JC models using nonlinear least square methods to same baseline test data at different strains, strain rates, and temperatures. Both models are capable of modeling strain hardening and thermal softening phenomena. However, the ISV model can also accommodate the adiabatic and recovery effects, while the JC model is isothermal. Based on the method of design of experiment, FEA simulations and corresponding cutting tests were performed using the cutting tool with a 20 deg chamfer angle. The predicted chip morphology using the ISV model is consistent with the measured chips, while the JC model is not. The predicted temperatures can be qualitatively verified by the subsurface microstructure. In addition, the ISV model gave larger subsurface von Mises stress, plastic strain, and temperature compared with those by the JC model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations
    typeJournal Paper
    journal volume128
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2193549
    journal fristpage749
    journal lastpage759
    identifier eissn1528-8935
    keywordsTemperature
    keywordsMachining
    keywordsStress
    keywordsEngineering simulation
    keywordsCutting
    keywordsPlasticity
    keywordsModeling
    keywordsFlow (Dynamics)
    keywordsDeformation AND Finite element analysis
    treeJournal of Manufacturing Science and Engineering:;2006:;volume( 128 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian