YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Preform Design of Powder Metallurgy Turbine Disks Using Equi-Potential Line Method

    Source: Journal of Manufacturing Science and Engineering:;2006:;volume( 128 ):;issue: 003::page 677
    Author:
    Yuhong Liu
    ,
    Fuguo Li
    ,
    Shuxin Wang
    ,
    S. Jack Hu
    DOI: 10.1115/1.2194066
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In a material hot forging process, rational preform design not only ensures that metal flows properly in die cavity and that final products have excellent quality, but also reduces tooling cost. In the present work, it is proved in theory that the differential equation of electric potential (∇2ϕ=0) in the electrostatic field is similar to the differential equations of velocity potential function (∇2φ=0) and velocity stream function (∇2ψ=0) in velocity field during the material forming process, with all three represented in the form of the Laplace equation. Moreover, the material flow in the plastic stage and the energy in electrostatic field all meet the least-energy principle. Therefore, according to the similarity criteria, an equi-potential line (EPL) method is proposed for the design of the preform shape in material hot forging. Different voltages are applied to the billet shape and the final product shape to generate a proper electrostatic field. One optimal equi-potential line is selected among the innumerable equi-potential lines as the basic shape of the preform shape and is processed into the preform shape following a three-step procedure. The preform design by the EPL method is compared with that by the traditional industrial method. The results show that the proposed method for preform design is feasible and reliable for practical applications.
    keyword(s): Design , Turbines , Disks , Preforms , Shapes AND Forging ,
    • Download: (369.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Preform Design of Powder Metallurgy Turbine Disks Using Equi-Potential Line Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/134138
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorYuhong Liu
    contributor authorFuguo Li
    contributor authorShuxin Wang
    contributor authorS. Jack Hu
    date accessioned2017-05-09T00:20:42Z
    date available2017-05-09T00:20:42Z
    date copyrightAugust, 2006
    date issued2006
    identifier issn1087-1357
    identifier otherJMSEFK-27953#677_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/134138
    description abstractIn a material hot forging process, rational preform design not only ensures that metal flows properly in die cavity and that final products have excellent quality, but also reduces tooling cost. In the present work, it is proved in theory that the differential equation of electric potential (∇2ϕ=0) in the electrostatic field is similar to the differential equations of velocity potential function (∇2φ=0) and velocity stream function (∇2ψ=0) in velocity field during the material forming process, with all three represented in the form of the Laplace equation. Moreover, the material flow in the plastic stage and the energy in electrostatic field all meet the least-energy principle. Therefore, according to the similarity criteria, an equi-potential line (EPL) method is proposed for the design of the preform shape in material hot forging. Different voltages are applied to the billet shape and the final product shape to generate a proper electrostatic field. One optimal equi-potential line is selected among the innumerable equi-potential lines as the basic shape of the preform shape and is processed into the preform shape following a three-step procedure. The preform design by the EPL method is compared with that by the traditional industrial method. The results show that the proposed method for preform design is feasible and reliable for practical applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePreform Design of Powder Metallurgy Turbine Disks Using Equi-Potential Line Method
    typeJournal Paper
    journal volume128
    journal issue3
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.2194066
    journal fristpage677
    journal lastpage682
    identifier eissn1528-8935
    keywordsDesign
    keywordsTurbines
    keywordsDisks
    keywordsPreforms
    keywordsShapes AND Forging
    treeJournal of Manufacturing Science and Engineering:;2006:;volume( 128 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian