| contributor author | Pei-Hung Chi | |
| contributor author | Fang-Bor Weng | |
| contributor author | Ay Su | |
| contributor author | Shih-Hung Chan | |
| date accessioned | 2017-05-09T00:20:31Z | |
| date available | 2017-05-09T00:20:31Z | |
| date copyright | August, 2006 | |
| date issued | 2006 | |
| identifier issn | 2381-6872 | |
| identifier other | JFCSAU-28926#292_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/134051 | |
| description abstract | A three-dimensional (3D) model has been developed to simulate proton exchange membrane fuel cells. The model accounts simultaneously for electrochemical kinetics, current distribution, hydrodynamics, and multi-components transport. A single set of conservation equations of mass, momentum, energy, species, and electric current are developed and numerically solved using a finite-volume-based computational fluid dynamics technique (by computational fluid dynamics ACE+ commercial code). The physical model is presented for a 5cm×4.92cm×0.4479cm 3D geometry test cell with serpentine channels and counter flow. Subsequently, the model is applied to explore cell temperature effects in the cell environment with different relative humidity of inlet. The numerical model is validated and agreed well with the experimental data. The nonuniformity of thermal and water-saturation distributions is calculated and analyzed as well as its influence on the cell performance. As the cell is operated at low voltages (or high current densities), the thermal field of fuel cell tends to be nonuniform and exists locally in hot spots. The mechanism of thermal field and water content interacted with membrane dehydration and cathode water flooding will be discussed and revealed their influences on the cell performance, stability and degradation will be revealed. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Numerical Modeling of Proton Exchange Membrane Fuel Cell With Considering Thermal and Relative Humidity Effects on the Cell Performance | |
| type | Journal Paper | |
| journal volume | 3 | |
| journal issue | 3 | |
| journal title | Journal of Fuel Cell Science and Technology | |
| identifier doi | 10.1115/1.2211632 | |
| journal fristpage | 292 | |
| journal lastpage | 302 | |
| identifier eissn | 2381-6910 | |
| keywords | Fuel cells | |
| keywords | Catalysts | |
| keywords | Current density | |
| keywords | Equations | |
| keywords | Floods | |
| keywords | Membranes | |
| keywords | Proton exchange membrane fuel cells | |
| keywords | Water | |
| keywords | Flow (Dynamics) | |
| keywords | Temperature | |
| keywords | Electric potential | |
| keywords | Channels (Hydraulic engineering) | |
| keywords | Computer simulation | |
| keywords | Gas diffusion layers | |
| keywords | Polarization (Electricity) | |
| keywords | Computational fluid dynamics AND Kinetic energy | |
| tree | Journal of Fuel Cell Science and Technology:;2006:;volume( 003 ):;issue: 003 | |
| contenttype | Fulltext | |