Three Regimes of Non-Newtonian Rimming FlowSource: Journal of Fluids Engineering:;2006:;volume( 128 ):;issue: 001::page 107Author:Sergei Fomin
DOI: 10.1115/1.2137342Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The present study is related to the rimming flow of non-Newtonian fluid on the inner surface of a horizontal rotating cylinder. Using a scale analysis, the main characteristic scales and nondimensional parameters, which describe the principal features of the process, are found. Exploiting the fact that one of the parameters is very small, an approximate asymptotic mathematical model of the process is developed and justified. For a wide range of fluids, a general constitutive law can be presented by a single function relating shear stress and shear rate that corresponds to a generalized Newtonian model. For this case, the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a steady-state solution is proved. Within the bounds stipulated by this condition, film thickness admits a continuous solution, which corresponds to subcritical and critical flow regimes. It is proved that for the critical regime the solution has a corner on the rising wall of the cylinder. In the supercritical flow regime, a discontinuous solution is possible and a hydraulic jump may occur. It is shown that straightforward leading order steady-state theory can work well to study the shock location and height. For the particular case of a power-law model, the analytical solution of a steady-state equation for the fluid film thickness is found in explicit form. More complex rheological models, which show linear Newtonian behavior at low shear rates with transition to power law at moderate shear rates, are also considered. In particular, numerical computations were carried out for the Ellis model. For this model, some analytical asymptotic solutions have also been obtained in explicit form and compared with the results of numerical computations. Based on these solutions, the optimal values of parameters, which should be used in the Ellis equation for the correct simulation of the coating flows, are determined; the criteria that guarantee the steady-state continuous solutions are defined; and the size and location of the stationary hydraulic jumps, which form when the flow is in the supercritical state, are obtained for the different flow parameters.
keyword(s): Flow (Dynamics) , Cylinders , Equations , Steady state , Thickness , Shear (Mechanics) , Stress , Fluids , Non-Newtonian fluids AND Hydraulic jump ,
|
Collections
Show full item record
| contributor author | Sergei Fomin | |
| date accessioned | 2017-05-09T00:20:26Z | |
| date available | 2017-05-09T00:20:26Z | |
| date copyright | January, 2006 | |
| date issued | 2006 | |
| identifier issn | 0098-2202 | |
| identifier other | JFEGA4-27214#107_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/134000 | |
| description abstract | The present study is related to the rimming flow of non-Newtonian fluid on the inner surface of a horizontal rotating cylinder. Using a scale analysis, the main characteristic scales and nondimensional parameters, which describe the principal features of the process, are found. Exploiting the fact that one of the parameters is very small, an approximate asymptotic mathematical model of the process is developed and justified. For a wide range of fluids, a general constitutive law can be presented by a single function relating shear stress and shear rate that corresponds to a generalized Newtonian model. For this case, the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a steady-state solution is proved. Within the bounds stipulated by this condition, film thickness admits a continuous solution, which corresponds to subcritical and critical flow regimes. It is proved that for the critical regime the solution has a corner on the rising wall of the cylinder. In the supercritical flow regime, a discontinuous solution is possible and a hydraulic jump may occur. It is shown that straightforward leading order steady-state theory can work well to study the shock location and height. For the particular case of a power-law model, the analytical solution of a steady-state equation for the fluid film thickness is found in explicit form. More complex rheological models, which show linear Newtonian behavior at low shear rates with transition to power law at moderate shear rates, are also considered. In particular, numerical computations were carried out for the Ellis model. For this model, some analytical asymptotic solutions have also been obtained in explicit form and compared with the results of numerical computations. Based on these solutions, the optimal values of parameters, which should be used in the Ellis equation for the correct simulation of the coating flows, are determined; the criteria that guarantee the steady-state continuous solutions are defined; and the size and location of the stationary hydraulic jumps, which form when the flow is in the supercritical state, are obtained for the different flow parameters. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Three Regimes of Non-Newtonian Rimming Flow | |
| type | Journal Paper | |
| journal volume | 128 | |
| journal issue | 1 | |
| journal title | Journal of Fluids Engineering | |
| identifier doi | 10.1115/1.2137342 | |
| journal fristpage | 107 | |
| journal lastpage | 112 | |
| identifier eissn | 1528-901X | |
| keywords | Flow (Dynamics) | |
| keywords | Cylinders | |
| keywords | Equations | |
| keywords | Steady state | |
| keywords | Thickness | |
| keywords | Shear (Mechanics) | |
| keywords | Stress | |
| keywords | Fluids | |
| keywords | Non-Newtonian fluids AND Hydraulic jump | |
| tree | Journal of Fluids Engineering:;2006:;volume( 128 ):;issue: 001 | |
| contenttype | Fulltext |