YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anisotropy-Invariant Mapping of Turbulence in a Flow Past an Unswept Airfoil at High Angle of Attack

    Source: Journal of Fluids Engineering:;2006:;volume( 128 ):;issue: 003::page 559
    Author:
    N. Jovičić
    ,
    M. Breuer
    ,
    J. Jovanović
    DOI: 10.1115/1.2175162
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Turbulence investigations of the flow past an unswept wing at a high angle of attack are reported. Detailed predictions were carried out using large-eddy simulations (LES) with very fine grids in the vicinity of the wall in order to resolve the near-wall structures. Since only a well-resolved LES ensures reliable results and hence allows a detailed analysis of turbulence, the Reynolds number investigated was restricted to Rec=105 based on the chord length c. Admittedly, under real flight conditions Rec is considerably higher (about (35–40)∙106). However, in combination with the inclination angle of attack α=18 deg this Rec value guarantees a practically relevant flow behavior, i.e., the flow exhibits a trailing-edge separation including some interesting flow phenomena such as a thin separation bubble, transition, separation of the turbulent boundary layer, and large-scale vortical structures in the wake. Due to the fine grid resolution applied, the aforementioned flow features are predicted in detail. Thus, reliable results are obtained which form the basis for advanced turbulence analysis. In order to provide a deeper insight into the nature of turbulence, the flow was analyzed using the invariant theory of turbulence by (J. Fluid Mech., 82, 161–178, 1977). Therefore, the anisotropy of various portions of the flow was extracted and displayed in the invariant map. This allowed us to examine the state of turbulence in distinct regions and provided an improved illustration of what happens in the turbulent flow. Thus, turbulence itself and the way in which it develops were extensively investigated, leading to an improved understanding of the physical mechanisms involved, not restricted to a standard test case such as channel flow but for a realistic, practically relevant flow problem at a moderate Reynolds number.
    keyword(s): Flow (Dynamics) , Turbulence , Anisotropy AND Airfoils ,
    • Download: (506.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anisotropy-Invariant Mapping of Turbulence in a Flow Past an Unswept Airfoil at High Angle of Attack

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133948
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorN. Jovičić
    contributor authorM. Breuer
    contributor authorJ. Jovanović
    date accessioned2017-05-09T00:20:21Z
    date available2017-05-09T00:20:21Z
    date copyrightMay, 2006
    date issued2006
    identifier issn0098-2202
    identifier otherJFEGA4-27217#559_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133948
    description abstractTurbulence investigations of the flow past an unswept wing at a high angle of attack are reported. Detailed predictions were carried out using large-eddy simulations (LES) with very fine grids in the vicinity of the wall in order to resolve the near-wall structures. Since only a well-resolved LES ensures reliable results and hence allows a detailed analysis of turbulence, the Reynolds number investigated was restricted to Rec=105 based on the chord length c. Admittedly, under real flight conditions Rec is considerably higher (about (35–40)∙106). However, in combination with the inclination angle of attack α=18 deg this Rec value guarantees a practically relevant flow behavior, i.e., the flow exhibits a trailing-edge separation including some interesting flow phenomena such as a thin separation bubble, transition, separation of the turbulent boundary layer, and large-scale vortical structures in the wake. Due to the fine grid resolution applied, the aforementioned flow features are predicted in detail. Thus, reliable results are obtained which form the basis for advanced turbulence analysis. In order to provide a deeper insight into the nature of turbulence, the flow was analyzed using the invariant theory of turbulence by (J. Fluid Mech., 82, 161–178, 1977). Therefore, the anisotropy of various portions of the flow was extracted and displayed in the invariant map. This allowed us to examine the state of turbulence in distinct regions and provided an improved illustration of what happens in the turbulent flow. Thus, turbulence itself and the way in which it develops were extensively investigated, leading to an improved understanding of the physical mechanisms involved, not restricted to a standard test case such as channel flow but for a realistic, practically relevant flow problem at a moderate Reynolds number.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnisotropy-Invariant Mapping of Turbulence in a Flow Past an Unswept Airfoil at High Angle of Attack
    typeJournal Paper
    journal volume128
    journal issue3
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.2175162
    journal fristpage559
    journal lastpage567
    identifier eissn1528-901X
    keywordsFlow (Dynamics)
    keywordsTurbulence
    keywordsAnisotropy AND Airfoils
    treeJournal of Fluids Engineering:;2006:;volume( 128 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian