YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ejection Interaction of Two Adjacent Micropumps

    Source: Journal of Fluids Engineering:;2006:;volume( 128 ):;issue: 004::page 742
    Author:
    H.-P. Cheng
    ,
    C.-P. Chien
    DOI: 10.1115/1.2201638
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This research intends to apply thermal bubble micropumps to motorcycle’s fuel atomizer system with ink and Stoddard solvent as the work liquids, and then utilize computational fluid dynamics to discuss the fluid interaction of two adjacent micropumps under continuous ejection with time lag, which covers the particle shape and movement track of ejected droplets, fluid interaction of ejected droplets, and velocity of droplets as well as work liquid replenishment. The micropump consists of 50 independent micropumps, with orifice of 50μm in diameter and working frequency of 5kHz. As shown in results, when the external air velocity is 0m∕sec, the velocity of droplets ejected later is faster than that of droplets ejected earlier. If the work liquid is ink, the replenishing rate of two adjacent micropumps is higher than that of single micropump. If the work liquid is Stoddard solvent, the replenishing rate of two adjacent micropumps is similar to that of single micropump. When the external air velocity is 15.0m∕sec and work liquid is ink, the velocity of droplet ejected later is slower than that of droplet ejected earlier, and the replenishing rate of two adjacent micropumps is lower than that of single micropump with the external air velocity of 0m∕sec. If the work liquid is Stoddard solvent, the velocities of two adjacent droplets are approximate, while the replenishing rates of two adjacent micropumps are approximate to that of single micropump with the external air velocity of 0m∕sec.
    keyword(s): Bubbles , Micropumps , Shapes AND Inks ,
    • Download: (1.074Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ejection Interaction of Two Adjacent Micropumps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133909
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorH.-P. Cheng
    contributor authorC.-P. Chien
    date accessioned2017-05-09T00:20:17Z
    date available2017-05-09T00:20:17Z
    date copyrightJuly, 2006
    date issued2006
    identifier issn0098-2202
    identifier otherJFEGA4-27219#742_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133909
    description abstractThis research intends to apply thermal bubble micropumps to motorcycle’s fuel atomizer system with ink and Stoddard solvent as the work liquids, and then utilize computational fluid dynamics to discuss the fluid interaction of two adjacent micropumps under continuous ejection with time lag, which covers the particle shape and movement track of ejected droplets, fluid interaction of ejected droplets, and velocity of droplets as well as work liquid replenishment. The micropump consists of 50 independent micropumps, with orifice of 50μm in diameter and working frequency of 5kHz. As shown in results, when the external air velocity is 0m∕sec, the velocity of droplets ejected later is faster than that of droplets ejected earlier. If the work liquid is ink, the replenishing rate of two adjacent micropumps is higher than that of single micropump. If the work liquid is Stoddard solvent, the replenishing rate of two adjacent micropumps is similar to that of single micropump. When the external air velocity is 15.0m∕sec and work liquid is ink, the velocity of droplet ejected later is slower than that of droplet ejected earlier, and the replenishing rate of two adjacent micropumps is lower than that of single micropump with the external air velocity of 0m∕sec. If the work liquid is Stoddard solvent, the velocities of two adjacent droplets are approximate, while the replenishing rates of two adjacent micropumps are approximate to that of single micropump with the external air velocity of 0m∕sec.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEjection Interaction of Two Adjacent Micropumps
    typeJournal Paper
    journal volume128
    journal issue4
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.2201638
    journal fristpage742
    journal lastpage750
    identifier eissn1528-901X
    keywordsBubbles
    keywordsMicropumps
    keywordsShapes AND Inks
    treeJournal of Fluids Engineering:;2006:;volume( 128 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian