Multi-Element Unstructured Analyses of Complex Valve SystemsSource: Journal of Fluids Engineering:;2006:;volume( 128 ):;issue: 004::page 707DOI: 10.1115/1.2170119Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The safe and reliable operation of high-pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high-fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with submodels for grid adaption, grid movement, and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high-pressure feed systems and have been difficult to deal with using traditional computational fluid dynamics methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets, etc. In the paper, we will discuss performance losses related to cryogenic control valves and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the “choking-like” behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of a pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system-wide phenomena leading to an undesirable chatter at high flow conditions.
keyword(s): Pressure , Flow (Dynamics) , Engineering simulation , Valves AND Fluids ,
|
Collections
Show full item record
contributor author | Vineet Ahuja | |
contributor author | Russell Daines | |
contributor author | Jody Woods | |
contributor author | Ashvin Hosangadi | |
contributor author | Jeremy Shipman | |
date accessioned | 2017-05-09T00:20:16Z | |
date available | 2017-05-09T00:20:16Z | |
date copyright | July, 2006 | |
date issued | 2006 | |
identifier issn | 0098-2202 | |
identifier other | JFEGA4-27219#707_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/133905 | |
description abstract | The safe and reliable operation of high-pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high-fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with submodels for grid adaption, grid movement, and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high-pressure feed systems and have been difficult to deal with using traditional computational fluid dynamics methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets, etc. In the paper, we will discuss performance losses related to cryogenic control valves and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the “choking-like” behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of a pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system-wide phenomena leading to an undesirable chatter at high flow conditions. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Multi-Element Unstructured Analyses of Complex Valve Systems | |
type | Journal Paper | |
journal volume | 128 | |
journal issue | 4 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.2170119 | |
journal fristpage | 707 | |
journal lastpage | 716 | |
identifier eissn | 1528-901X | |
keywords | Pressure | |
keywords | Flow (Dynamics) | |
keywords | Engineering simulation | |
keywords | Valves AND Fluids | |
tree | Journal of Fluids Engineering:;2006:;volume( 128 ):;issue: 004 | |
contenttype | Fulltext |