YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Computational Approach to Conley’s Decomposition Theorem

    Source: Journal of Computational and Nonlinear Dynamics:;2006:;volume( 001 ):;issue: 004::page 312
    Author:
    Hyunju Ban
    ,
    William D. Kalies
    DOI: 10.1115/1.2338651
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Background. The discrete dynamics generated by a continuous map can be represented combinatorially by an appropriate multivalued map on a discretization of the phase space such as a cubical grid or triangulation. Method of approach. We describe explicit algorithms for computing dynamical structures for the combinatorial multivalued maps. Results. We provide computational complexity bounds and numerical examples. Specifically we focus on the computation attractor-repeller pairs and Lyapunov functions for Morse decompositions. Conclusions. The computed discrete Lyapunov functions are weak Lyapunov functions and well-approximate a continuous Lyapunov function for the underlying map.
    keyword(s): Theorems (Mathematics) , Dynamics (Mechanics) , Algorithms , Computation , Functions AND Approximation ,
    • Download: (302.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Computational Approach to Conley’s Decomposition Theorem

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133257
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorHyunju Ban
    contributor authorWilliam D. Kalies
    date accessioned2017-05-09T00:19:05Z
    date available2017-05-09T00:19:05Z
    date copyrightOctober, 2006
    date issued2006
    identifier issn1555-1415
    identifier otherJCNDDM-25552#312_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133257
    description abstractBackground. The discrete dynamics generated by a continuous map can be represented combinatorially by an appropriate multivalued map on a discretization of the phase space such as a cubical grid or triangulation. Method of approach. We describe explicit algorithms for computing dynamical structures for the combinatorial multivalued maps. Results. We provide computational complexity bounds and numerical examples. Specifically we focus on the computation attractor-repeller pairs and Lyapunov functions for Morse decompositions. Conclusions. The computed discrete Lyapunov functions are weak Lyapunov functions and well-approximate a continuous Lyapunov function for the underlying map.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Computational Approach to Conley’s Decomposition Theorem
    typeJournal Paper
    journal volume1
    journal issue4
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.2338651
    journal fristpage312
    journal lastpage319
    identifier eissn1555-1423
    keywordsTheorems (Mathematics)
    keywordsDynamics (Mechanics)
    keywordsAlgorithms
    keywordsComputation
    keywordsFunctions AND Approximation
    treeJournal of Computational and Nonlinear Dynamics:;2006:;volume( 001 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian