YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue

    Source: Journal of Biomechanical Engineering:;2006:;volume( 128 ):;issue: 003::page 419
    Author:
    Ferhun C. Caner
    ,
    Ignacio Carol
    DOI: 10.1115/1.2187036
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a nonlinearly elastic anisotropic microplane formulation in 3D for computational constitutive modeling of arterial soft tissue in the passive regime. The constitutive modeling of arterial (and other biological) soft tissue is crucial for accurate finite element calculations, which in turn are essential for design of implants, surgical procedures, bioartificial tissue, as well as determination of effect of progressive diseases on tissues and implants. The model presented is defined at a lower scale (mesoscale) than the conventional macroscale and it incorporates the effect of all the (collagen) fibers which are anisotropic structural components distributed in all directions within the tissue material in addition to that of isotropic bulk tissue. It is shown that the proposed model not only reproduces Holzapfel’s recent model but also improves on it by accounting for the actual three-dimensional distribution of fiber orientation in the arterial wall, which endows the model with advanced capabilities in simulation of remodeling of soft tissue. The formulation is flexible so that its parameters could be adjusted to represent the arterial wall either as a single material or a material composed of several layers in finite element analyses of arteries. Explicit algorithms for both the material subroutine and the explicit integration with dynamic relaxation of equations of motion using finite element method are given. To circumvent the slow convergence of the standard dynamic relaxation and small time steps dictated by the stability of the explicit integrator, an adaptive dynamic relaxation technique that ensures stability and fastest possible convergence rates is developed. Incompressibility is enforced using penalty method with an updated penalty parameter. The model is used to simulate experimental data from the literature demonstrating that the model response is in excellent agreement with the data. An experimental procedure to determine the distribution of fiber directions in 3D for biological soft tissue is suggested in accordance with the microplane concept. It is also argued that this microplane formulation could be modified or extended to model many other phenomena of interest in biomechanics.
    • Download: (412.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133206
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorFerhun C. Caner
    contributor authorIgnacio Carol
    date accessioned2017-05-09T00:18:58Z
    date available2017-05-09T00:18:58Z
    date copyrightJune, 2006
    date issued2006
    identifier issn0148-0731
    identifier otherJBENDY-26597#419_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133206
    description abstractThis paper presents a nonlinearly elastic anisotropic microplane formulation in 3D for computational constitutive modeling of arterial soft tissue in the passive regime. The constitutive modeling of arterial (and other biological) soft tissue is crucial for accurate finite element calculations, which in turn are essential for design of implants, surgical procedures, bioartificial tissue, as well as determination of effect of progressive diseases on tissues and implants. The model presented is defined at a lower scale (mesoscale) than the conventional macroscale and it incorporates the effect of all the (collagen) fibers which are anisotropic structural components distributed in all directions within the tissue material in addition to that of isotropic bulk tissue. It is shown that the proposed model not only reproduces Holzapfel’s recent model but also improves on it by accounting for the actual three-dimensional distribution of fiber orientation in the arterial wall, which endows the model with advanced capabilities in simulation of remodeling of soft tissue. The formulation is flexible so that its parameters could be adjusted to represent the arterial wall either as a single material or a material composed of several layers in finite element analyses of arteries. Explicit algorithms for both the material subroutine and the explicit integration with dynamic relaxation of equations of motion using finite element method are given. To circumvent the slow convergence of the standard dynamic relaxation and small time steps dictated by the stability of the explicit integrator, an adaptive dynamic relaxation technique that ensures stability and fastest possible convergence rates is developed. Incompressibility is enforced using penalty method with an updated penalty parameter. The model is used to simulate experimental data from the literature demonstrating that the model response is in excellent agreement with the data. An experimental procedure to determine the distribution of fiber directions in 3D for biological soft tissue is suggested in accordance with the microplane concept. It is also argued that this microplane formulation could be modified or extended to model many other phenomena of interest in biomechanics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMicroplane Constitutive Model and Computational Framework for Blood Vessel Tissue
    typeJournal Paper
    journal volume128
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2187036
    journal fristpage419
    journal lastpage427
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2006:;volume( 128 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian