YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Stent Design Parameters on Normal Artery Wall Mechanics

    Source: Journal of Biomechanical Engineering:;2006:;volume( 128 ):;issue: 005::page 757
    Author:
    Julian Bedoya
    ,
    Clark A. Meyer
    ,
    Lucas H. Timmins
    ,
    Michael R. Moreno
    ,
    James E. Moore
    DOI: 10.1115/1.2246236
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A stent is a device designed to restore flow through constricted arteries. These tubular scaffold devices are delivered to the afflicted region and deployed using minimally invasive techniques. Stents must have sufficient radial strength to prop the diseased artery open. The presence of a stent can subject the artery to abnormally high stresses that can trigger adverse biologic responses culminating in restenosis. The primary aim of this investigation was to investigate the effects of varying stent “design parameters” on the stress field induced in the normal artery wall and the radial displacement achieved by the stent. The generic stent models were designed to represent a sample of the attributes incorporated in present commercially available stents. Each stent was deployed in a homogeneous, nonlinear hyperelastic artery model and evaluated using commercially available finite element analysis software. Of the designs investigated herein, those employing large axial strut spacing, blunted corners, and higher amplitudes in the ring segments induced high circumferential stresses over smaller areas of the artery’s inner surface than all other configurations. Axial strut spacing was the dominant parameter in this study, i.e., all designs employing a small stent strut spacing induced higher stresses over larger areas than designs employing the large strut spacing. Increasing either radius of curvature or strut amplitude generally resulted in smaller areas exposed to high stresses. At larger strut spacing, sensitivity to radius of curvature was increased in comparison to the small strut spacing. With the larger strut spacing designs, the effects of varying amplitude could be offset by varying the radius of curvature and vice versa. The range of minimum radial displacements from the unstented diastolic radius observed among all designs was less than 90μm. Evidence presented herein suggests that stent designs incorporating large axial strut spacing, blunted corners at bends, and higher amplitudes exposed smaller regions of the artery to high stresses, while maintaining a radial displacement that should be sufficient to restore adequate flow.
    keyword(s): Stress , Struts (Engineering) , Design AND stents ,
    • Download: (767.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Stent Design Parameters on Normal Artery Wall Mechanics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/133164
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorJulian Bedoya
    contributor authorClark A. Meyer
    contributor authorLucas H. Timmins
    contributor authorMichael R. Moreno
    contributor authorJames E. Moore
    date accessioned2017-05-09T00:18:52Z
    date available2017-05-09T00:18:52Z
    date copyrightOctober, 2006
    date issued2006
    identifier issn0148-0731
    identifier otherJBENDY-26616#757_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/133164
    description abstractA stent is a device designed to restore flow through constricted arteries. These tubular scaffold devices are delivered to the afflicted region and deployed using minimally invasive techniques. Stents must have sufficient radial strength to prop the diseased artery open. The presence of a stent can subject the artery to abnormally high stresses that can trigger adverse biologic responses culminating in restenosis. The primary aim of this investigation was to investigate the effects of varying stent “design parameters” on the stress field induced in the normal artery wall and the radial displacement achieved by the stent. The generic stent models were designed to represent a sample of the attributes incorporated in present commercially available stents. Each stent was deployed in a homogeneous, nonlinear hyperelastic artery model and evaluated using commercially available finite element analysis software. Of the designs investigated herein, those employing large axial strut spacing, blunted corners, and higher amplitudes in the ring segments induced high circumferential stresses over smaller areas of the artery’s inner surface than all other configurations. Axial strut spacing was the dominant parameter in this study, i.e., all designs employing a small stent strut spacing induced higher stresses over larger areas than designs employing the large strut spacing. Increasing either radius of curvature or strut amplitude generally resulted in smaller areas exposed to high stresses. At larger strut spacing, sensitivity to radius of curvature was increased in comparison to the small strut spacing. With the larger strut spacing designs, the effects of varying amplitude could be offset by varying the radius of curvature and vice versa. The range of minimum radial displacements from the unstented diastolic radius observed among all designs was less than 90μm. Evidence presented herein suggests that stent designs incorporating large axial strut spacing, blunted corners at bends, and higher amplitudes exposed smaller regions of the artery to high stresses, while maintaining a radial displacement that should be sufficient to restore adequate flow.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Stent Design Parameters on Normal Artery Wall Mechanics
    typeJournal Paper
    journal volume128
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2246236
    journal fristpage757
    journal lastpage765
    identifier eissn1528-8951
    keywordsStress
    keywordsStruts (Engineering)
    keywordsDesign AND stents
    treeJournal of Biomechanical Engineering:;2006:;volume( 128 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian