The Quantification of Physiologically Relevant Cross-Shear Wear Phenomena on Orthopaedic Bearing Materials Using the MAX-Shear Wear Testing SystemSource: Journal of Tribology:;2005:;volume( 127 ):;issue: 004::page 740DOI: 10.1115/1.2000272Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Background: The occurrence of multi-directional sliding motion between total knee replacement bearing surfaces is theorized to be a primary wear and failure mechanism of ultra-high molecular weight poly(ethylene) (UHMWPE). To better quantify the tribologic mechanisms of this cross-shear wear, the MAX-Shear wear-testing system was developed to evaluate candidate biomaterials under controlled conditions of cross-shear wear. Method of approach: A computer controlled traveling x-y stage under a 3 degree-of-freedom statically loaded pin is used to implement the complex multi-directional motion pathways observed during TKR wear simulation. A MHz collection of dynamic x-y friction was available on all six environmentally controlled stations. The functionality of this testing platform was proven in a 100,000 cycle, 11.6 MPa, wear test using 15.0 mm diameter polished stainless steel spheres against flat GUR4150 UHMWPE. A five-pointed star wear pattern was used to incorporate the physiologically relevant cross-shear sliding conditions of stop/start, 50mm∕s entraining velocity and five crossing angles of 72°. Using normalized volumetric reconstruction of the resulting surface damage, a direct quantitative relationship between linear and cross-shear surface damage intensity was obtained. Results: Cross-shear surface damage volume loss was found to be 2.94 (±0.88) times that associated with linear sliding under identical tribologic conditions. SEM analysis of linear wear damage showed consistent fibril orientation along the direction of sliding while cross-shear wear damage showed multi-directional fibril orientations and increased surface roughness. Significant increases in discrete crossing-point friction coefficients were recorded throughout testing. Conclusions: This scientific approach to quantifying the tribologic effects of cross-shear provides fundamental wear mechanism data that are critical in evaluating potential biomaterials for use as in vivo bearings. Relevant multi-axis, cross-shear wear testing is necessary to provide quantifiable measures of complex biomaterials wear phenomena.
keyword(s): Wear , Motion , Shear (Mechanics) , Bearings , Testing , Wear testing , Disks AND Orthopedics ,
|
Collections
Show full item record
contributor author | Matthew R. Gevaert | |
contributor author | Martine LaBerge | |
contributor author | Jennifer M. Gordon | |
contributor author | John D. DesJardins | |
date accessioned | 2017-05-09T00:17:52Z | |
date available | 2017-05-09T00:17:52Z | |
date copyright | October, 2005 | |
date issued | 2005 | |
identifier issn | 0742-4787 | |
identifier other | JOTRE9-28735#740_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/132647 | |
description abstract | Background: The occurrence of multi-directional sliding motion between total knee replacement bearing surfaces is theorized to be a primary wear and failure mechanism of ultra-high molecular weight poly(ethylene) (UHMWPE). To better quantify the tribologic mechanisms of this cross-shear wear, the MAX-Shear wear-testing system was developed to evaluate candidate biomaterials under controlled conditions of cross-shear wear. Method of approach: A computer controlled traveling x-y stage under a 3 degree-of-freedom statically loaded pin is used to implement the complex multi-directional motion pathways observed during TKR wear simulation. A MHz collection of dynamic x-y friction was available on all six environmentally controlled stations. The functionality of this testing platform was proven in a 100,000 cycle, 11.6 MPa, wear test using 15.0 mm diameter polished stainless steel spheres against flat GUR4150 UHMWPE. A five-pointed star wear pattern was used to incorporate the physiologically relevant cross-shear sliding conditions of stop/start, 50mm∕s entraining velocity and five crossing angles of 72°. Using normalized volumetric reconstruction of the resulting surface damage, a direct quantitative relationship between linear and cross-shear surface damage intensity was obtained. Results: Cross-shear surface damage volume loss was found to be 2.94 (±0.88) times that associated with linear sliding under identical tribologic conditions. SEM analysis of linear wear damage showed consistent fibril orientation along the direction of sliding while cross-shear wear damage showed multi-directional fibril orientations and increased surface roughness. Significant increases in discrete crossing-point friction coefficients were recorded throughout testing. Conclusions: This scientific approach to quantifying the tribologic effects of cross-shear provides fundamental wear mechanism data that are critical in evaluating potential biomaterials for use as in vivo bearings. Relevant multi-axis, cross-shear wear testing is necessary to provide quantifiable measures of complex biomaterials wear phenomena. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | The Quantification of Physiologically Relevant Cross-Shear Wear Phenomena on Orthopaedic Bearing Materials Using the MAX-Shear Wear Testing System | |
type | Journal Paper | |
journal volume | 127 | |
journal issue | 4 | |
journal title | Journal of Tribology | |
identifier doi | 10.1115/1.2000272 | |
journal fristpage | 740 | |
journal lastpage | 749 | |
identifier eissn | 1528-8897 | |
keywords | Wear | |
keywords | Motion | |
keywords | Shear (Mechanics) | |
keywords | Bearings | |
keywords | Testing | |
keywords | Wear testing | |
keywords | Disks AND Orthopedics | |
tree | Journal of Tribology:;2005:;volume( 127 ):;issue: 004 | |
contenttype | Fulltext |