YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling and Design of an Optically Powered Microactuator for a Microfluidic Dispenser

    Source: Journal of Mechanical Design:;2005:;volume( 127 ):;issue: 004::page 825
    Author:
    Mandar Deshpande
    ,
    Laxman Saggere
    DOI: 10.1115/1.1900749
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents systematic modeling and design of an optically powered piezoelectric microactuator for driving a microfluidic dispenser that could find a potential application in a retinal prosthesis. The first part of the paper treats a microactuator system comprised of a micron-scale piezoelectric unimorph integrated with a miniaturized solid-state solar cell. The microactuator design is tailored for driving a microfluidic dispenser to dispense a stored liquid chemical through its micron-sized outlet ports at a rate of about 1pl∕s when the integrated solar cell is irradiated by light at a power density of 3W∕m2, corresponding to the requirements of the potential application. The microactuator system design is accomplished by first obtaining analytical models for the solar cell characteristic behavior and the microactuator displacements and then combining them to obtain the key dimensions of the microactuator through a design optimization. An analysis of the performance characteristics of the microactuator and a finite element analysis validating the analytical model for the microactuator’s displacements and the peak stresses under the operating loads are presented. The latter part of the paper presents a design of a microfluidic dispenser utilizing the optically powered microactuator and satisfying the desired input/output requirements. An analytical model integrating various energy domains involved in the system, viz. opto-electrical, piezoelectric, mechanical and hydraulic, is derived for the liquid flow through the dispenser’s micron-sized outlet ports. Finally, the energetic feasibility of the microactuator design obtained for the specified input and output criteria is also discussed.
    keyword(s): Design , Microactuators , Solar cells AND Electric potential ,
    • Download: (620.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling and Design of an Optically Powered Microactuator for a Microfluidic Dispenser

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/132332
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorMandar Deshpande
    contributor authorLaxman Saggere
    date accessioned2017-05-09T00:17:16Z
    date available2017-05-09T00:17:16Z
    date copyrightJuly, 2005
    date issued2005
    identifier issn1050-0472
    identifier otherJMDEDB-27807#825_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/132332
    description abstractThis paper presents systematic modeling and design of an optically powered piezoelectric microactuator for driving a microfluidic dispenser that could find a potential application in a retinal prosthesis. The first part of the paper treats a microactuator system comprised of a micron-scale piezoelectric unimorph integrated with a miniaturized solid-state solar cell. The microactuator design is tailored for driving a microfluidic dispenser to dispense a stored liquid chemical through its micron-sized outlet ports at a rate of about 1pl∕s when the integrated solar cell is irradiated by light at a power density of 3W∕m2, corresponding to the requirements of the potential application. The microactuator system design is accomplished by first obtaining analytical models for the solar cell characteristic behavior and the microactuator displacements and then combining them to obtain the key dimensions of the microactuator through a design optimization. An analysis of the performance characteristics of the microactuator and a finite element analysis validating the analytical model for the microactuator’s displacements and the peak stresses under the operating loads are presented. The latter part of the paper presents a design of a microfluidic dispenser utilizing the optically powered microactuator and satisfying the desired input/output requirements. An analytical model integrating various energy domains involved in the system, viz. opto-electrical, piezoelectric, mechanical and hydraulic, is derived for the liquid flow through the dispenser’s micron-sized outlet ports. Finally, the energetic feasibility of the microactuator design obtained for the specified input and output criteria is also discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling and Design of an Optically Powered Microactuator for a Microfluidic Dispenser
    typeJournal Paper
    journal volume127
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.1900749
    journal fristpage825
    journal lastpage836
    identifier eissn1528-9001
    keywordsDesign
    keywordsMicroactuators
    keywordsSolar cells AND Electric potential
    treeJournal of Mechanical Design:;2005:;volume( 127 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian