YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Hybrid Genetic Algorithm for Mixed-Discrete Design Optimization

    Source: Journal of Mechanical Design:;2005:;volume( 127 ):;issue: 006::page 1100
    Author:
    Singiresu S. Rao
    ,
    Ying Xiong
    DOI: 10.1115/1.1876436
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new hybrid genetic algorithm is presented for the solution of mixed-discrete nonlinear design optimization. In this approach, the genetic algorithm (GA) is used mainly to determine the optimal feasible region that contains the global optimum point, and the hybrid negative subgradient method integrated with discrete one-dimensional search is subsequently used to replace the GA to find the final optimum solution. The hybrid genetic algorithm, combining the advantages of random search and deterministic search methods, can improve the convergence speed and computational efficiency compared with some other GAs or random search methods. Several practical examples of mechanical design are tested using the computer program developed. The numerical results demonstrate the effectiveness and robustness of the proposed approach.
    keyword(s): Design , Optimization AND Genetic algorithms ,
    • Download: (176.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Hybrid Genetic Algorithm for Mixed-Discrete Design Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/132246
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorSingiresu S. Rao
    contributor authorYing Xiong
    date accessioned2017-05-09T00:17:04Z
    date available2017-05-09T00:17:04Z
    date copyrightNovember, 2005
    date issued2005
    identifier issn1050-0472
    identifier otherJMDEDB-27816#1100_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/132246
    description abstractA new hybrid genetic algorithm is presented for the solution of mixed-discrete nonlinear design optimization. In this approach, the genetic algorithm (GA) is used mainly to determine the optimal feasible region that contains the global optimum point, and the hybrid negative subgradient method integrated with discrete one-dimensional search is subsequently used to replace the GA to find the final optimum solution. The hybrid genetic algorithm, combining the advantages of random search and deterministic search methods, can improve the convergence speed and computational efficiency compared with some other GAs or random search methods. Several practical examples of mechanical design are tested using the computer program developed. The numerical results demonstrate the effectiveness and robustness of the proposed approach.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Hybrid Genetic Algorithm for Mixed-Discrete Design Optimization
    typeJournal Paper
    journal volume127
    journal issue6
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.1876436
    journal fristpage1100
    journal lastpage1112
    identifier eissn1528-9001
    keywordsDesign
    keywordsOptimization AND Genetic algorithms
    treeJournal of Mechanical Design:;2005:;volume( 127 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian