YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quintic Spline Interpolation With Minimal Feed Fluctuation

    Source: Journal of Manufacturing Science and Engineering:;2005:;volume( 127 ):;issue: 002::page 339
    Author:
    Kaan Erkorkmaz
    ,
    Yusuf Altintas
    ,
    ASME Fellow
    DOI: 10.1115/1.1830493
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a parameterization and an interpolation method for quintic splines, which result in a smooth and consistent feed rate profile. The discrepancy between the spline parameter and the actual arc length leads to undesirable feed fluctuations and discontinuity, which elicit themselves as high frequency acceleration and jerk harmonics, causing unwanted structural vibrations and excessive tracking error. Two different approaches are presented that alleviate this problem. The first approach is based on modifying the spline tool path so that it is optimally parameterized with respect to its arc length, which allows it to be accurately interpolated in real-time with minimal complexity. The second approach is based on scheduling the spline parameter to accurately yield the desired arc displacement (hence feed rate), either by approximation of the relationship between the arc length and the spline parameter with a feed correction polynomial, or by solving the spline parameter iteratively in real-time at each interpolation step. This approach is particularly suited for predetermined spline tool paths, which are not arc-length parameterized and cannot be modified. The proposed methods have been compared to approximately arc-length C3 quintic spline parameterization (Wang, F.-C., Wright, P. K., Barsky, B. A., and Yang, D. C. H., 1999, “Approximately Arc-Length Parameterized C3 Quintic Interpolatory Splines,” ASME J. Mech. Des, 121 , No. 3., pp. 430–439) and first- and second-order Taylor series interpolation techniques (Huang, J.-T., and Yang, D. C. H., 1992, “Precision Command Generation for Computer Controlled Machines,” Precision Machining: Technology and Machine Development and Improvement, ASME-PED 58 , pp. 89–104; Lin, R.-S. 2000, “Real-Time Surface Interpolator for 3-D Parametric Surface Machining on 3-Axis Machine Tools,” Intl. J. Mach. Tools Manuf., 40 , No.10, pp. 1513–1526) in terms of feed rate consistency, computational efficiency, and experimental contouring accuracy.
    keyword(s): Splines , Interpolation AND Polynomials ,
    • Download: (366.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quintic Spline Interpolation With Minimal Feed Fluctuation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/132198
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorKaan Erkorkmaz
    contributor authorYusuf Altintas
    contributor authorASME Fellow
    date accessioned2017-05-09T00:16:58Z
    date available2017-05-09T00:16:58Z
    date copyrightMay, 2005
    date issued2005
    identifier issn1087-1357
    identifier otherJMSEFK-27864#339_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/132198
    description abstractThis paper presents a parameterization and an interpolation method for quintic splines, which result in a smooth and consistent feed rate profile. The discrepancy between the spline parameter and the actual arc length leads to undesirable feed fluctuations and discontinuity, which elicit themselves as high frequency acceleration and jerk harmonics, causing unwanted structural vibrations and excessive tracking error. Two different approaches are presented that alleviate this problem. The first approach is based on modifying the spline tool path so that it is optimally parameterized with respect to its arc length, which allows it to be accurately interpolated in real-time with minimal complexity. The second approach is based on scheduling the spline parameter to accurately yield the desired arc displacement (hence feed rate), either by approximation of the relationship between the arc length and the spline parameter with a feed correction polynomial, or by solving the spline parameter iteratively in real-time at each interpolation step. This approach is particularly suited for predetermined spline tool paths, which are not arc-length parameterized and cannot be modified. The proposed methods have been compared to approximately arc-length C3 quintic spline parameterization (Wang, F.-C., Wright, P. K., Barsky, B. A., and Yang, D. C. H., 1999, “Approximately Arc-Length Parameterized C3 Quintic Interpolatory Splines,” ASME J. Mech. Des, 121 , No. 3., pp. 430–439) and first- and second-order Taylor series interpolation techniques (Huang, J.-T., and Yang, D. C. H., 1992, “Precision Command Generation for Computer Controlled Machines,” Precision Machining: Technology and Machine Development and Improvement, ASME-PED 58 , pp. 89–104; Lin, R.-S. 2000, “Real-Time Surface Interpolator for 3-D Parametric Surface Machining on 3-Axis Machine Tools,” Intl. J. Mach. Tools Manuf., 40 , No.10, pp. 1513–1526) in terms of feed rate consistency, computational efficiency, and experimental contouring accuracy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleQuintic Spline Interpolation With Minimal Feed Fluctuation
    typeJournal Paper
    journal volume127
    journal issue2
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.1830493
    journal fristpage339
    journal lastpage349
    identifier eissn1528-8935
    keywordsSplines
    keywordsInterpolation AND Polynomials
    treeJournal of Manufacturing Science and Engineering:;2005:;volume( 127 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian