YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mold Accessibility via Gauss Map Analysis

    Source: Journal of Computing and Information Science in Engineering:;2005:;volume( 005 ):;issue: 002::page 79
    Author:
    Gershon Elber
    ,
    Xianming Chen
    ,
    Elaine Cohen
    DOI: 10.1115/1.1875572
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In manufacturing processes like injection molding or die casting, a two-piece mold is required to be separable, that is, be able to have both pieces of the mold removed in opposite directions while interfering neither with the mold nor with each other. The fundamental problem is to find a viewing (i.e., separating) direction, from which a valid partition line (i.e., the contact curves of the two mold pieces) exists. While previous research work on this problem exists for polyhedral models, verifying and finding such a partition line for general freeform shapes, represented by NURBS surfaces, is still an open question. This paper shows that such a valid partition exists for a compact surface of genus g, if and only if there is a viewing direction from which the silhouette consists of exactly g+1 nonsingular disjoint loops. Hence, the two-piece mold separability problem is essentially reduced to the topological analysis of silhouettes. In addition, we deal with removing almost vertical surface regions from the mold so that the form can more easily be extracted from the mold. It follows that the aspect graph, which gives all topologically distinct silhouettes, allows one to determine the existence of a valid partition as well as to find such a partition when it exists. In this paper, we present an aspect graph computation technique for compact free-form objects represented as NURBS surfaces. All the vision event curves (parabolic curves, flecnodal curves, and bitangency curves) relevant to mold separability are computed by symbolic techniques based on the NURBS representation, combined with numerical processing. An image dilation technique is then used for robust aspect graph cell decomposition on the sphere of viewing directions. Thus, an exact solution to the two-piece mold separability problem is given for such models.
    keyword(s): Interior walls , Algorithms , Computation , Cylinders , Generators AND Theorems (Mathematics) ,
    • Download: (305.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mold Accessibility via Gauss Map Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131478
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorGershon Elber
    contributor authorXianming Chen
    contributor authorElaine Cohen
    date accessioned2017-05-09T00:15:35Z
    date available2017-05-09T00:15:35Z
    date copyrightJune, 2005
    date issued2005
    identifier issn1530-9827
    identifier otherJCISB6-25955#79_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131478
    description abstractIn manufacturing processes like injection molding or die casting, a two-piece mold is required to be separable, that is, be able to have both pieces of the mold removed in opposite directions while interfering neither with the mold nor with each other. The fundamental problem is to find a viewing (i.e., separating) direction, from which a valid partition line (i.e., the contact curves of the two mold pieces) exists. While previous research work on this problem exists for polyhedral models, verifying and finding such a partition line for general freeform shapes, represented by NURBS surfaces, is still an open question. This paper shows that such a valid partition exists for a compact surface of genus g, if and only if there is a viewing direction from which the silhouette consists of exactly g+1 nonsingular disjoint loops. Hence, the two-piece mold separability problem is essentially reduced to the topological analysis of silhouettes. In addition, we deal with removing almost vertical surface regions from the mold so that the form can more easily be extracted from the mold. It follows that the aspect graph, which gives all topologically distinct silhouettes, allows one to determine the existence of a valid partition as well as to find such a partition when it exists. In this paper, we present an aspect graph computation technique for compact free-form objects represented as NURBS surfaces. All the vision event curves (parabolic curves, flecnodal curves, and bitangency curves) relevant to mold separability are computed by symbolic techniques based on the NURBS representation, combined with numerical processing. An image dilation technique is then used for robust aspect graph cell decomposition on the sphere of viewing directions. Thus, an exact solution to the two-piece mold separability problem is given for such models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMold Accessibility via Gauss Map Analysis
    typeJournal Paper
    journal volume5
    journal issue2
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.1875572
    journal fristpage79
    journal lastpage85
    identifier eissn1530-9827
    keywordsInterior walls
    keywordsAlgorithms
    keywordsComputation
    keywordsCylinders
    keywordsGenerators AND Theorems (Mathematics)
    treeJournal of Computing and Information Science in Engineering:;2005:;volume( 005 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian