YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow

    Source: Journal of Biomechanical Engineering:;2005:;volume( 127 ):;issue: 002::page 244
    Author:
    Steven W. Day
    ,
    James C. McDaniel
    DOI: 10.1115/1.1865189
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent (Reynolds) stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (3–9L∕min) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and∕or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6L∕min), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9L∕min) and low (3L∕min) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.
    keyword(s): Flow (Dynamics) , Measurement , Blood , Pumps , Blades , Shear (Mechanics) , Stress AND Turbulence ,
    • Download: (426.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131403
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorSteven W. Day
    contributor authorJames C. McDaniel
    date accessioned2017-05-09T00:15:24Z
    date available2017-05-09T00:15:24Z
    date copyrightApril, 2005
    date issued2005
    identifier issn0148-0731
    identifier otherJBENDY-26484#244_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131403
    description abstractMagnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent (Reynolds) stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (3–9L∕min) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and∕or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6L∕min), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9L∕min) and low (3L∕min) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow
    typeJournal Paper
    journal volume127
    journal issue2
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1865189
    journal fristpage244
    journal lastpage253
    identifier eissn1528-8951
    keywordsFlow (Dynamics)
    keywordsMeasurement
    keywordsBlood
    keywordsPumps
    keywordsBlades
    keywordsShear (Mechanics)
    keywordsStress AND Turbulence
    treeJournal of Biomechanical Engineering:;2005:;volume( 127 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian