YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effectiveness, Active Energy Produced by Molecular Motors, and Nonlinear Capacitance of the Cochlear Outer Hair Cell

    Source: Journal of Biomechanical Engineering:;2005:;volume( 127 ):;issue: 003::page 391
    Author:
    Alexander A. Spector
    DOI: 10.1115/1.1894233
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell’s length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell’s molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors’ active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor’s effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%–30%.
    • Download: (226.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effectiveness, Active Energy Produced by Molecular Motors, and Nonlinear Capacitance of the Cochlear Outer Hair Cell

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131383
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorAlexander A. Spector
    date accessioned2017-05-09T00:15:22Z
    date available2017-05-09T00:15:22Z
    date copyrightJune, 2005
    date issued2005
    identifier issn0148-0731
    identifier otherJBENDY-26498#391_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131383
    description abstractCochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell’s length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell’s molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors’ active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor’s effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%–30%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffectiveness, Active Energy Produced by Molecular Motors, and Nonlinear Capacitance of the Cochlear Outer Hair Cell
    typeJournal Paper
    journal volume127
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1894233
    journal fristpage391
    journal lastpage399
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2005:;volume( 127 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian