YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Syringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements

    Source: Journal of Biomechanical Engineering:;2005:;volume( 127 ):;issue: 007::page 1110
    Author:
    Bryn A. Martin
    ,
    John N. Oshinski
    ,
    Wojciech Kalata
    ,
    Francis Loth
    ,
    Thomas J. Royston
    DOI: 10.1115/1.2073687
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A simplified in vitro model of the spinal canal, based on in vivo magnetic resonance imaging, was used to examine the hydrodynamics of the human spinal cord and subarachnoid space with syringomyelia. In vivo magnetic resonance imaging (MRI) measurements of subarachnoid (SAS) geometry and cerebrospinal fluid velocity were acquired in a patient with syringomyelia and used to aid in the in vitro model design and experiment. The in vitro model contained a fluid-filled coaxial elastic tube to represent a syrinx. A computer controlled pulsatile pump was used to subject the in vitro model to a CSF flow waveform representative of that measured in vivo. Fluid velocity was measured at three axial locations within the in vitro model using the same MRI scanner as the patient study. Pressure and syrinx wall motion measurements were conducted external to the MR scanner using the same model and flow input. Transducers measured unsteady pressure both in the SAS and intra-syrinx at four axial locations in the model. A laser Doppler vibrometer recorded the syrinx wall motion at 18 axial locations and three polar positions. Results indicated that the peak-to-peak amplitude of the SAS flow waveform in vivo was approximately tenfold that of the syrinx and in phase (SAS∼5.2±0.6ml∕s,syrinx∼0.5±0.3ml∕s). The in vitro flow waveform approximated the in vivo peak-to-peak magnitude (SAS∼4.6±0.2ml∕s,syrinx∼0.4±0.3ml∕s). Peak-to-peak in vitro pressure variation in both the SAS and syrinx was approximately 6 mm Hg. Syrinx pressure waveform lead the SAS pressure waveform by approximately 40 ms. Syrinx pressure was found to be less than the SAS for ∼200ms during the 860-ms flow cycle. Unsteady pulse wave velocity in the syrinx was computed to be a maximum of ∼25m∕s. LDV measurements indicated that spinal cord wall motion was nonaxisymmetric with a maximum displacement of ∼140μm, which is below the resolution limit of MRI. Agreement between in vivo and in vitro MR measurements demonstrates that the hydrodynamics in the fluid filled coaxial elastic tube system are similar to those present in a single patient with syringomyelia. The presented in vitro study of spinal cord wall motion, and complex unsteady pressure and flow environment within the syrinx and SAS, provides insight into the complex biomechanical forces present in syringomyelia.
    keyword(s): Pressure , Flow (Dynamics) , Measurement , Magnetic resonance imaging , Spinal cord , Cycles , Motion AND Hydrodynamics ,
    • Download: (1.286Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Syringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131287
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBryn A. Martin
    contributor authorJohn N. Oshinski
    contributor authorWojciech Kalata
    contributor authorFrancis Loth
    contributor authorThomas J. Royston
    date accessioned2017-05-09T00:15:10Z
    date available2017-05-09T00:15:10Z
    date copyrightDecember, 2005
    date issued2005
    identifier issn0148-0731
    identifier otherJBENDY-26573#1110_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131287
    description abstractA simplified in vitro model of the spinal canal, based on in vivo magnetic resonance imaging, was used to examine the hydrodynamics of the human spinal cord and subarachnoid space with syringomyelia. In vivo magnetic resonance imaging (MRI) measurements of subarachnoid (SAS) geometry and cerebrospinal fluid velocity were acquired in a patient with syringomyelia and used to aid in the in vitro model design and experiment. The in vitro model contained a fluid-filled coaxial elastic tube to represent a syrinx. A computer controlled pulsatile pump was used to subject the in vitro model to a CSF flow waveform representative of that measured in vivo. Fluid velocity was measured at three axial locations within the in vitro model using the same MRI scanner as the patient study. Pressure and syrinx wall motion measurements were conducted external to the MR scanner using the same model and flow input. Transducers measured unsteady pressure both in the SAS and intra-syrinx at four axial locations in the model. A laser Doppler vibrometer recorded the syrinx wall motion at 18 axial locations and three polar positions. Results indicated that the peak-to-peak amplitude of the SAS flow waveform in vivo was approximately tenfold that of the syrinx and in phase (SAS∼5.2±0.6ml∕s,syrinx∼0.5±0.3ml∕s). The in vitro flow waveform approximated the in vivo peak-to-peak magnitude (SAS∼4.6±0.2ml∕s,syrinx∼0.4±0.3ml∕s). Peak-to-peak in vitro pressure variation in both the SAS and syrinx was approximately 6 mm Hg. Syrinx pressure waveform lead the SAS pressure waveform by approximately 40 ms. Syrinx pressure was found to be less than the SAS for ∼200ms during the 860-ms flow cycle. Unsteady pulse wave velocity in the syrinx was computed to be a maximum of ∼25m∕s. LDV measurements indicated that spinal cord wall motion was nonaxisymmetric with a maximum displacement of ∼140μm, which is below the resolution limit of MRI. Agreement between in vivo and in vitro MR measurements demonstrates that the hydrodynamics in the fluid filled coaxial elastic tube system are similar to those present in a single patient with syringomyelia. The presented in vitro study of spinal cord wall motion, and complex unsteady pressure and flow environment within the syrinx and SAS, provides insight into the complex biomechanical forces present in syringomyelia.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSyringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements
    typeJournal Paper
    journal volume127
    journal issue7
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.2073687
    journal fristpage1110
    journal lastpage1120
    identifier eissn1528-8951
    keywordsPressure
    keywordsFlow (Dynamics)
    keywordsMeasurement
    keywordsMagnetic resonance imaging
    keywordsSpinal cord
    keywordsCycles
    keywordsMotion AND Hydrodynamics
    treeJournal of Biomechanical Engineering:;2005:;volume( 127 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian