Show simple item record

contributor authorD. Krajcinovic
contributor authorLife Fellow ASME
contributor authorA. Rinaldi
date accessioned2017-05-09T00:15:08Z
date available2017-05-09T00:15:08Z
date copyrightJanuary, 2005
date issued2005
identifier issn0021-8936
identifier otherJAMCAV-26588#76_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131271
description abstractStatistical damage mechanics in this work establishes the connection between damaged random heterogeneous micromaterial and the system macroparameter. Renormalization group theory provides the bridge from the microscale to the macroscale. Delaunay lattices, which simulate and capture the role of the disordered microstructure in damage process, substitute a polycrystal specimen assuming that microcracks are grain-boundaries cracks. The macroparameters of the system, in the form of algebraic functions, are obtained applying the Family–Vicsek scaling relation on simulation data.
publisherThe American Society of Mechanical Engineers (ASME)
titleStatistical Damage Mechanics— Part I: Theory
typeJournal Paper
journal volume72
journal issue1
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.1825434
journal fristpage76
journal lastpage85
identifier eissn1528-9036
keywordsDensity
keywordsMicroscale devices
keywordsFailure
keywordsFractals
keywordsGeometry
keywordsMicrocracks
keywordsStress
keywordsForce
keywordsGrain boundaries
keywordsMicromechanics (Engineering)
keywordsFracture (Materials)
keywordsPhase transitions
keywordsRenormalization (Physics)
keywordsFunctions
keywordsStatistical mechanics AND Hardening
treeJournal of Applied Mechanics:;2005:;volume( 072 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record