YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Nonproportional Damped Systems via Symmetric Positive Inverse Problems

    Source: Journal of Vibration and Acoustics:;2004:;volume( 126 ):;issue: 002::page 212
    Author:
    L. Starek
    ,
    D. J. Inman
    DOI: 10.1115/1.1688760
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper summarizes the authors’ previous efforts on solving inverse eigenvalue problems for linear vibrating systems described by a vector differential equations with constant coefficient matrices and nonproportional damping. The inverse problem of interest here is that of determining symmetric, real, positive definite coefficient matrices assumed to represent mass normalized velocity and position coefficient matrices, given a set of specified complex eigenvalues and eigenvectors. Two previous solutions to the symmetric inverse eigenvalue problem, presented by Starek and Inman, are reviewed and then extended to the design of underdamped vibrating systems with nonproportional damping.
    keyword(s): Eigenvalues , Inverse problems , Design , Vibration , Polynomials AND Damping ,
    • Download: (109.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Nonproportional Damped Systems via Symmetric Positive Inverse Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/131068
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorL. Starek
    contributor authorD. J. Inman
    date accessioned2017-05-09T00:14:48Z
    date available2017-05-09T00:14:48Z
    date copyrightApril, 2004
    date issued2004
    identifier issn1048-9002
    identifier otherJVACEK-28869#212_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/131068
    description abstractThis paper summarizes the authors’ previous efforts on solving inverse eigenvalue problems for linear vibrating systems described by a vector differential equations with constant coefficient matrices and nonproportional damping. The inverse problem of interest here is that of determining symmetric, real, positive definite coefficient matrices assumed to represent mass normalized velocity and position coefficient matrices, given a set of specified complex eigenvalues and eigenvectors. Two previous solutions to the symmetric inverse eigenvalue problem, presented by Starek and Inman, are reviewed and then extended to the design of underdamped vibrating systems with nonproportional damping.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of Nonproportional Damped Systems via Symmetric Positive Inverse Problems
    typeJournal Paper
    journal volume126
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.1688760
    journal fristpage212
    journal lastpage219
    identifier eissn1528-8927
    keywordsEigenvalues
    keywordsInverse problems
    keywordsDesign
    keywordsVibration
    keywordsPolynomials AND Damping
    treeJournal of Vibration and Acoustics:;2004:;volume( 126 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian