YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effects of a Stationary Surface Pocket on EHL Line Contact Start-Up

    Source: Journal of Tribology:;2004:;volume( 126 ):;issue: 004::page 672
    Author:
    Jiaxin Zhao
    ,
    Farshid Sadeghi
    DOI: 10.1115/1.1759342
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, the start-up process of line contact elastohydrodynamic lubrication with a stationary central surface pocket is studied. The solution of the pressure profile and film thickness distribution in the contact area is achieved by using a mixed lubricated-solid contact model. The mass balance of pocket lubricant flow is enforced by using a simple algorithm which adjusts the pocket cavitation boundary. With the surface pocket in the center of contact, the Hertzian contact area is divided into two micro-EHL contacts: the inlet micro-EHL contact and the outlet micro-EHL contact. The amount of lubricant trapped inside the pocket determines the overall start-up behavior. If the lubricant trapped is less than a critical amount, the two micro-EHL contact would be in start-up condition in serial: the lubricant film builds up in the inlet micro-EHL contact area first and then the lubricant film builds up in the outlet micro-EHL contact after the inlet lubricant flow fills the pocket. The start-up time in this case is longer than the start-up time for smooth surface start-up. If the lubricant trapped is more than the critical amount, the two micro-EHL contact would be in start-up condition in parallel: a lubricant film builds up in the inlet micro-EHL contact and at the same time a lubricant film builds up in the outlet micro-EHL contact. The start-up time in this case is much smaller than that of the smooth surface start-up. Compared with the smooth surface start-up condition, because the solid contact vanishes faster, there would be less frictional heat generated in the contact area and thus the surface temperature rise during the start-up process would be much smaller. These effects could prove beneficial in applications with frequent start and stop or oscillating running conditions, in which direct solid to solid contact occurs at the start (restart) of motion.
    • Download: (194.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effects of a Stationary Surface Pocket on EHL Line Contact Start-Up

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/130825
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorJiaxin Zhao
    contributor authorFarshid Sadeghi
    date accessioned2017-05-09T00:14:23Z
    date available2017-05-09T00:14:23Z
    date copyrightOctober, 2004
    date issued2004
    identifier issn0742-4787
    identifier otherJOTRE9-28727#672_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/130825
    description abstractIn this paper, the start-up process of line contact elastohydrodynamic lubrication with a stationary central surface pocket is studied. The solution of the pressure profile and film thickness distribution in the contact area is achieved by using a mixed lubricated-solid contact model. The mass balance of pocket lubricant flow is enforced by using a simple algorithm which adjusts the pocket cavitation boundary. With the surface pocket in the center of contact, the Hertzian contact area is divided into two micro-EHL contacts: the inlet micro-EHL contact and the outlet micro-EHL contact. The amount of lubricant trapped inside the pocket determines the overall start-up behavior. If the lubricant trapped is less than a critical amount, the two micro-EHL contact would be in start-up condition in serial: the lubricant film builds up in the inlet micro-EHL contact area first and then the lubricant film builds up in the outlet micro-EHL contact after the inlet lubricant flow fills the pocket. The start-up time in this case is longer than the start-up time for smooth surface start-up. If the lubricant trapped is more than the critical amount, the two micro-EHL contact would be in start-up condition in parallel: a lubricant film builds up in the inlet micro-EHL contact and at the same time a lubricant film builds up in the outlet micro-EHL contact. The start-up time in this case is much smaller than that of the smooth surface start-up. Compared with the smooth surface start-up condition, because the solid contact vanishes faster, there would be less frictional heat generated in the contact area and thus the surface temperature rise during the start-up process would be much smaller. These effects could prove beneficial in applications with frequent start and stop or oscillating running conditions, in which direct solid to solid contact occurs at the start (restart) of motion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effects of a Stationary Surface Pocket on EHL Line Contact Start-Up
    typeJournal Paper
    journal volume126
    journal issue4
    journal titleJournal of Tribology
    identifier doi10.1115/1.1759342
    journal fristpage672
    journal lastpage680
    identifier eissn1528-8897
    treeJournal of Tribology:;2004:;volume( 126 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian