Show simple item record

contributor authorT. Osinga
contributor authorU. Frommherz
contributor authorA. Steinfeld
contributor authorC. Wieckert
date accessioned2017-05-09T00:14:23Z
date available2017-05-09T00:14:23Z
date copyrightFebruary, 2004
date issued2004
identifier issn0199-6231
identifier otherJSEEDO-28348#633_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/130813
description abstractZinc production by solar carbothermic reduction of ZnO offers a CO2 emission reduction by a factor of 5 vis-à-vis the conventional fossil-fuel-based electrolytic or Imperial Smelting processes. Zinc can serve as a fuel in Zn-air fuel cells or can be further reacted with H2O to form high-purity H2. In either case, the product ZnO is solar-recycled to Zn. We report on experimental results obtained with a 5 kW solar chemical reactor prototype that features two cavities in series, with the inner one functioning as the solar absorber and the outer one as the reaction chamber. The inner cavity is made of graphite and contains a windowed aperture to let in concentrated solar radiation. The outer cavity is well insulated and contains the ZnO-C mixture that is subjected to irradiation from the inner graphite cavity. With this arrangement, the inner cavity protects the window against particles and condensable gases and further serves as a thermal shock absorber. Tests were conducted at PSI’s Solar Furnace and ETH’s High-Flux Solar Simulator to investigate the effect of process temperature (range 1350-1600 K), reducing agent type (beech charcoal, activated charcoal, petcoke), and C:ZnO stoichiometric molar ratio (range 0.7–0.9) on the reactor’s performance and chemical conversion. In a typical 40-min solar experiment at 1500 K, 500 g of a ZnO-C mixture were processed into Zn(g), CO, and CO2. Thermal efficiencies of up to 20% were achieved.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-cavity Solar Reactor
typeJournal Paper
journal volume126
journal issue1
journal titleJournal of Solar Energy Engineering
identifier doi10.1115/1.1639001
journal fristpage633
journal lastpage637
identifier eissn1528-8986
keywordsSolar energy
keywordsCavities
keywordsTemperature AND Graphite
treeJournal of Solar Energy Engineering:;2004:;volume( 126 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record