YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Use of “Fitness for Service” Assessment Procedures to Establish Allowable Flaw Sizes in Steel Cylinders

    Source: Journal of Pressure Vessel Technology:;2004:;volume( 126 ):;issue: 002::page 202
    Author:
    Mahendra D. Rana
    ,
    John H. Smith
    ,
    Consultant
    DOI: 10.1115/1.1687798
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: As part of the U.S. Department of Transportation safety regulations, seamless steel cylinders that are used to transport high-pressure gases are required to be periodically retested during their lifetime [1]. The safety regulations have recently been revised to permit the use of ultrasonic methods for retesting steel cylinders. These ultrasonic test methods permit the quantitative determination of the size of any flaws that are detected in the cylinders. Therefore, to use these ultrasonic test methods it is required that quantitative, “allowable flaw sizes” be established to set acceptance/rejection limits for the cylinders at the time of retesting. Typical flaws that can occur in seamless steel cylinders during service are line corrosion, gouges, local thin areas of corrosion, notches, and cracks. To establish “allowable flaw sizes” for seamless steel cylinders, an assessment of typical flaws that occur in seamless cylinders was first carried out to establish the “critical flaw sizes” (e.g., depth and length or area) for selected types of flaws. The critical flaw size is the size of the flaw that will cause the cylinders to fail at either the designated test pressure or at the marked service pressure. The API Recommended Practice 579 “Fitness-for-Service” was used to calculate the critical flaw sizes for a range of cylinder sizes and strength levels [2]. Several hundred monotonic hydrostatic, flawed-cylinder burst tests were conducted as part of an International Standards Organization (ISO) test program to evaluate the fracture performance of a wide range of steel cylinders [3]. The results of these tests were used to verify the calculated “critical flaw sizes” that were calculated using the API 579 procedures. These results showed that the analysis conducted according to API 579 always underestimated the actual flaw sizes to cause failure at test pressure or at service pressure. Therefore, the “Fitness for Service” assessment procedures can be used reliably to establish the “critical flaw sizes” for cylinders of all sizes and strength levels. After the “critical flaw sizes” to cause failure of the cylinders at both the test pressure and the service were established, the “allowable flaw sizes” were calculated for a wide range of the cylinder types and strength levels. This was done modifying (reducing) the size of the “critical flaw sizes” for each cylinder by adjusting for fatigue crack growth that may occur during the use of the cylinder. This results in the final “allowable flaw size” criteria that are used for defining the acceptance or rejection of the cylinders during retesting. This paper presents the results of the analytical and experimental work that was performed to establish the “critical flaw sizes” and “allowable flaw sizes” for a wide range of high-pressure gas cylinders.
    keyword(s): Pressure , Steel , Cylinders , Fitness-for-service , Failure , American Petroleum Institute AND Fatigue cracks ,
    • Download: (87.23Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Use of “Fitness for Service” Assessment Procedures to Establish Allowable Flaw Sizes in Steel Cylinders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/130699
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorMahendra D. Rana
    contributor authorJohn H. Smith
    contributor authorConsultant
    date accessioned2017-05-09T00:14:11Z
    date available2017-05-09T00:14:11Z
    date copyrightMay, 2004
    date issued2004
    identifier issn0094-9930
    identifier otherJPVTAS-28438#202_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/130699
    description abstractAs part of the U.S. Department of Transportation safety regulations, seamless steel cylinders that are used to transport high-pressure gases are required to be periodically retested during their lifetime [1]. The safety regulations have recently been revised to permit the use of ultrasonic methods for retesting steel cylinders. These ultrasonic test methods permit the quantitative determination of the size of any flaws that are detected in the cylinders. Therefore, to use these ultrasonic test methods it is required that quantitative, “allowable flaw sizes” be established to set acceptance/rejection limits for the cylinders at the time of retesting. Typical flaws that can occur in seamless steel cylinders during service are line corrosion, gouges, local thin areas of corrosion, notches, and cracks. To establish “allowable flaw sizes” for seamless steel cylinders, an assessment of typical flaws that occur in seamless cylinders was first carried out to establish the “critical flaw sizes” (e.g., depth and length or area) for selected types of flaws. The critical flaw size is the size of the flaw that will cause the cylinders to fail at either the designated test pressure or at the marked service pressure. The API Recommended Practice 579 “Fitness-for-Service” was used to calculate the critical flaw sizes for a range of cylinder sizes and strength levels [2]. Several hundred monotonic hydrostatic, flawed-cylinder burst tests were conducted as part of an International Standards Organization (ISO) test program to evaluate the fracture performance of a wide range of steel cylinders [3]. The results of these tests were used to verify the calculated “critical flaw sizes” that were calculated using the API 579 procedures. These results showed that the analysis conducted according to API 579 always underestimated the actual flaw sizes to cause failure at test pressure or at service pressure. Therefore, the “Fitness for Service” assessment procedures can be used reliably to establish the “critical flaw sizes” for cylinders of all sizes and strength levels. After the “critical flaw sizes” to cause failure of the cylinders at both the test pressure and the service were established, the “allowable flaw sizes” were calculated for a wide range of the cylinder types and strength levels. This was done modifying (reducing) the size of the “critical flaw sizes” for each cylinder by adjusting for fatigue crack growth that may occur during the use of the cylinder. This results in the final “allowable flaw size” criteria that are used for defining the acceptance or rejection of the cylinders during retesting. This paper presents the results of the analytical and experimental work that was performed to establish the “critical flaw sizes” and “allowable flaw sizes” for a wide range of high-pressure gas cylinders.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Use of “Fitness for Service” Assessment Procedures to Establish Allowable Flaw Sizes in Steel Cylinders
    typeJournal Paper
    journal volume126
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.1687798
    journal fristpage202
    journal lastpage207
    identifier eissn1528-8978
    keywordsPressure
    keywordsSteel
    keywordsCylinders
    keywordsFitness-for-service
    keywordsFailure
    keywordsAmerican Petroleum Institute AND Fatigue cracks
    treeJournal of Pressure Vessel Technology:;2004:;volume( 126 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian