YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty

    Source: Journal of Mechanical Design:;2004:;volume( 126 ):;issue: 003::page 386
    Author:
    Efstratios Nikolaidis
    ,
    Sophie Chen
    ,
    Harley Cudney
    ,
    Raphael T. Haftka
    ,
    Raluca Rosca
    DOI: 10.1115/1.1701878
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper compares probabilistic and possibility-based methods for design under uncertainty. It studies the effect of the amount of data about uncertainty on the effectiveness of each method. Only systems whose failure is catastrophic are considered, where catastrophic means that the boundary between success and failure is sharp. First, the paper examines the theoretical foundations of probability and possibility, focusing on the impact of the differences between the two theories on design. Then the paper compares the two theories on design problems. A major difference between probability and possibility is in the axioms about the union of events. Because of this difference, probability and possibility calculi are fundamentally different and one cannot simulate possibility calculus using probabilistic models. Possibility-based methods tend to underestimate the risk of failure of systems with many failure modes. For example, the possibility of failure of a series system of nominally identical components is equal to the possibility of failure of a single component. When designing for safety, the two methods try to maximize safety in radically different ways and consequently may produce significantly different designs. Probability minimizes the system failure probability whereas possibility maximizes the normalized deviation of the uncertain variables from their nominal values that the system can tolerate without failure. In contrast to probabilistic design, which accounts for the cost of reducing the probability of each failure mode in design, possibility tries to equalize the possibilities of failure of the failure modes, regardless of the attendant cost. In many safety assessment problems, one can easily determine the most conservative possibilistic model that is consistent with the available information, whereas this is not the case with probabilistic models. When we have sufficient data to build accurate probabilistic models of the uncertain variables, probabilistic design is better than possibility-based design. However, when designers need to make subjective decisions, both probabilistic and possibility-based designs can be useful. The reason is that large differences in these designs can alert designers to problems with the probabilistic design associated with insufficient data and tell them that they have more flexibility in the design than they may have known.
    keyword(s): Design , Failure , Probability AND Uncertainty ,
    • Download: (297.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/130510
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorEfstratios Nikolaidis
    contributor authorSophie Chen
    contributor authorHarley Cudney
    contributor authorRaphael T. Haftka
    contributor authorRaluca Rosca
    date accessioned2017-05-09T00:13:53Z
    date available2017-05-09T00:13:53Z
    date copyrightMay, 2004
    date issued2004
    identifier issn1050-0472
    identifier otherJMDEDB-27786#386_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/130510
    description abstractThis paper compares probabilistic and possibility-based methods for design under uncertainty. It studies the effect of the amount of data about uncertainty on the effectiveness of each method. Only systems whose failure is catastrophic are considered, where catastrophic means that the boundary between success and failure is sharp. First, the paper examines the theoretical foundations of probability and possibility, focusing on the impact of the differences between the two theories on design. Then the paper compares the two theories on design problems. A major difference between probability and possibility is in the axioms about the union of events. Because of this difference, probability and possibility calculi are fundamentally different and one cannot simulate possibility calculus using probabilistic models. Possibility-based methods tend to underestimate the risk of failure of systems with many failure modes. For example, the possibility of failure of a series system of nominally identical components is equal to the possibility of failure of a single component. When designing for safety, the two methods try to maximize safety in radically different ways and consequently may produce significantly different designs. Probability minimizes the system failure probability whereas possibility maximizes the normalized deviation of the uncertain variables from their nominal values that the system can tolerate without failure. In contrast to probabilistic design, which accounts for the cost of reducing the probability of each failure mode in design, possibility tries to equalize the possibilities of failure of the failure modes, regardless of the attendant cost. In many safety assessment problems, one can easily determine the most conservative possibilistic model that is consistent with the available information, whereas this is not the case with probabilistic models. When we have sufficient data to build accurate probabilistic models of the uncertain variables, probabilistic design is better than possibility-based design. However, when designers need to make subjective decisions, both probabilistic and possibility-based designs can be useful. The reason is that large differences in these designs can alert designers to problems with the probabilistic design associated with insufficient data and tell them that they have more flexibility in the design than they may have known.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
    typeJournal Paper
    journal volume126
    journal issue3
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.1701878
    journal fristpage386
    journal lastpage394
    identifier eissn1528-9001
    keywordsDesign
    keywordsFailure
    keywordsProbability AND Uncertainty
    treeJournal of Mechanical Design:;2004:;volume( 126 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian