contributor author | C. Kleinstreuer | |
contributor author | J. Koo | |
date accessioned | 2017-05-09T00:13:29Z | |
date available | 2017-05-09T00:13:29Z | |
date copyright | January, 2004 | |
date issued | 2004 | |
identifier issn | 0098-2202 | |
identifier other | JFEGA4-27193#1_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/130282 | |
description abstract | Fluid flow in microchannels or microtubes may differ in terms of wall frictional effects, and hence flow rates, when compared to macrochannels. Focusing on steady laminar fully developed flow of a liquid in different micro-conduits, relative surface roughness is captured in terms of a porous medium layer (PML) model. The new approach allows the evaluation of microfluidics variables as a function of PML characteristics, i.e., layer thickness and porosity, uncertainties in measuring hydraulic diameters as well as the inlet Reynolds number. Specifically, realistic values for the PML Darcy number, relative surface roughness, and actual flow area are taken into account to match observed friction factors in micro-conduits. The model predictions compared well with measured data sets for systems with significant relative roughness values. Although other surface effects may have influenced the experimental results as well, surface roughness is found to affect the friction factor and hence the flow parameters in relatively rough channels, e.g., those which are made of aluminum or stainless steel by way of micro-cutting processes. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits | |
type | Journal Paper | |
journal volume | 126 | |
journal issue | 1 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.1637633 | |
journal fristpage | 1 | |
journal lastpage | 9 | |
identifier eissn | 1528-901X | |
keywords | Flow (Dynamics) | |
keywords | Friction | |
keywords | Surface roughness | |
keywords | Channels (Hydraulic engineering) | |
keywords | Porous materials AND Microchannels | |
tree | Journal of Fluids Engineering:;2004:;volume( 126 ):;issue: 001 | |
contenttype | Fulltext | |