YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Micromechanical Simulation of Dynamic Fracture Using the Cohesive Finite Element Method

    Source: Journal of Engineering Materials and Technology:;2004:;volume( 126 ):;issue: 002::page 179
    Author:
    Jun Zhai
    ,
    Vikas Tomar
    ,
    Min Zhou
    DOI: 10.1115/1.1647127
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Dynamic fracture in two-phase Al2O3/TiB2 ceramic composite microstructures is analyzed explicitly using a cohesive finite element method (CFEM). This framework allows the effects of microstructural heterogeneity, phase morphology, phase distribution, and size scale to be quantified. The analyses consider arbitrary microstructural phase morphologies and entail explicit tracking of crack growth and arbitrary fracture patterns. The approach involves the use of CFEM models that integrate cohesive surfaces along all finite element boundaries as an intrinsic part of the material description. This approach obviates the need for any specific fracture criteria and assigns models the capability of predicting fracture paths and fracture patterns. Calculations are carried out using idealized phase morphologies as well as real phase morphologies in actual material microstructures. Issues analyzed include the influence of microstructural morphology on the fracture behavior, the influence of phase size on fracture resistance, the effect of interphase bonding strength on failure, and the effect of loading rate on fracture.
    keyword(s): Particulate matter , Fracture (Process) , Finite element methods , Finite element analysis , Electrical resistance , Ceramic composites , Bonding , Failure , Separation (Technology) AND Simulation ,
    • Download: (1.058Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Micromechanical Simulation of Dynamic Fracture Using the Cohesive Finite Element Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/130125
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorJun Zhai
    contributor authorVikas Tomar
    contributor authorMin Zhou
    date accessioned2017-05-09T00:13:11Z
    date available2017-05-09T00:13:11Z
    date copyrightApril, 2004
    date issued2004
    identifier issn0094-4289
    identifier otherJEMTA8-27057#179_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/130125
    description abstractDynamic fracture in two-phase Al2O3/TiB2 ceramic composite microstructures is analyzed explicitly using a cohesive finite element method (CFEM). This framework allows the effects of microstructural heterogeneity, phase morphology, phase distribution, and size scale to be quantified. The analyses consider arbitrary microstructural phase morphologies and entail explicit tracking of crack growth and arbitrary fracture patterns. The approach involves the use of CFEM models that integrate cohesive surfaces along all finite element boundaries as an intrinsic part of the material description. This approach obviates the need for any specific fracture criteria and assigns models the capability of predicting fracture paths and fracture patterns. Calculations are carried out using idealized phase morphologies as well as real phase morphologies in actual material microstructures. Issues analyzed include the influence of microstructural morphology on the fracture behavior, the influence of phase size on fracture resistance, the effect of interphase bonding strength on failure, and the effect of loading rate on fracture.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMicromechanical Simulation of Dynamic Fracture Using the Cohesive Finite Element Method
    typeJournal Paper
    journal volume126
    journal issue2
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.1647127
    journal fristpage179
    journal lastpage191
    identifier eissn1528-8889
    keywordsParticulate matter
    keywordsFracture (Process)
    keywordsFinite element methods
    keywordsFinite element analysis
    keywordsElectrical resistance
    keywordsCeramic composites
    keywordsBonding
    keywordsFailure
    keywordsSeparation (Technology) AND Simulation
    treeJournal of Engineering Materials and Technology:;2004:;volume( 126 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian