Show simple item record

contributor authorRajiv A. Naik
contributor authorDaniel P. DeLuca
contributor authorDilip M. Shah
date accessioned2017-05-09T00:13:03Z
date available2017-05-09T00:13:03Z
date copyrightApril, 2004
date issued2004
identifier issn1528-8919
identifier otherJETPEZ-26827#391_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/130046
description abstractSingle crystal nickel-base superalloys deform by shearing along 〈111〉 planes, sometimes referred to as “octahedral” slip planes. Under fatigue loading, cyclic stress produces alternating slip reversals on the critical slip systems which eventually results in fatigue crack initiation along the “critical” octahedral planes. A “critical plane” fatigue modeling approach was developed in the present study to analyze high cycle fatigue (HCF) failures in single crystal materials. This approach accounted for the effects of crystal orientation and the micromechanics of the deformation and slip mechanisms observed in single crystal materials. Three-dimensional stress and strain transformation equations were developed to determine stresses and strains along the crystallographic octahedral planes and corresponding slip systems. These stresses and strains were then used to calculate several multiaxial critical plane parameters to determine the amount of fatigue damage and also the “critical planes” along which HCF failures would initiate. The computed fatigue damage parameters were used along with experimentally measured fatigue lives, at 1100°F, to correlate the data for different loading orientations. Microscopic observations of the fracture surfaces were used to determine the actual octahedral plane (or facet) on which fatigue initiation occurred. X-ray diffraction measurements were then used to uniquely identify this damage initiation facet with respect to the crystal orientation in each specimen. These experimentally determined HCF initiation planes were compared with the analytically predicted “critical planes.”
publisherThe American Society of Mechanical Engineers (ASME)
titleCritical Plane Fatigue Modeling and Characterization of Single Crystal Nickel Superalloys
typeJournal Paper
journal volume126
journal issue2
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.1690768
journal fristpage391
journal lastpage400
identifier eissn0742-4795
keywordsFatigue
keywordsCrystals
keywordsNickel
keywordsSuperalloys
keywordsStress
keywordsModeling
keywordsFailure AND Shear (Mechanics)
treeJournal of Engineering for Gas Turbines and Power:;2004:;volume( 126 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record