YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    How Cyclic Loading Affects the Migration of Radio-Opaque Markers Attached to Tendon Grafts Using a New Method: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)

    Source: Journal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 001::page 62
    Author:
    P. J. Roos
    ,
    M. L. Hull
    ,
    S. M. Howell
    DOI: 10.1115/1.1644568
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An increase in anterior laxity following reconstruction of the anterior cruciate ligament (ACL) can result from lengthening of the graft construct in either the regions of fixation and/or the region of the graft substance between the fixations. RSA could be a useful technique to determine lengthening in these regions if a method can be devised for attaching radio-opaque markers to soft tissue grafts so that marker migration from repeated loading of the graft is limited. Therefore, the objectives of this study were 1) to develop a method for attaching radio-opaque markers to an ACL graft that limits marker migration within the graft, 2) to characterize the error of an RSA system used to study migration, and 3) to determine the maximum amount of migration and the time when it occurs during cyclic loading of ACL grafts. Tendon markers were constructed from a 0.8-mm tantalum ball and a stainless steel suture. Ten double-looped tendon grafts were passed through tibial tunnels drilled in bovine tibias and fixed with a tibial fixation device. Two tendon markers were sewn to one tendon bundle of each graft and the grafts were cyclically loaded for 225,000 cycles from 20 N to 170 N. At specified intervals, simultaneous radiographs were obtained of the tendon markers and a radiographic standard of known length. The bias and imprecision in measuring the length of the radiographic standard were 0.0 and 0.046 mm respectively. Marker migration was computed as the change in distance between the two tendon markers along the axis of the tibial tunnel. Marker migration was greatest after 225,000 cycles with a root mean square (RMS) value of less than 0.2 mm. Because the RMS value indicates the error introduced into measurements of lengthening and because this error is small, the method described for attaching markers to an ACL graft has the potential to be useful for determining lengthening of ACL graft constructs in in vivo studies in humans.
    keyword(s): Errors , Tunnels , Tendons , Anterior cruciate ligament , Tantalum , Cycles AND Soft tissues ,
    • Download: (550.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      How Cyclic Loading Affects the Migration of Radio-Opaque Markers Attached to Tendon Grafts Using a New Method: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129650
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorP. J. Roos
    contributor authorM. L. Hull
    contributor authorS. M. Howell
    date accessioned2017-05-09T00:12:22Z
    date available2017-05-09T00:12:22Z
    date copyrightFebruary, 2004
    date issued2004
    identifier issn0148-0731
    identifier otherJBENDY-26353#62_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129650
    description abstractAn increase in anterior laxity following reconstruction of the anterior cruciate ligament (ACL) can result from lengthening of the graft construct in either the regions of fixation and/or the region of the graft substance between the fixations. RSA could be a useful technique to determine lengthening in these regions if a method can be devised for attaching radio-opaque markers to soft tissue grafts so that marker migration from repeated loading of the graft is limited. Therefore, the objectives of this study were 1) to develop a method for attaching radio-opaque markers to an ACL graft that limits marker migration within the graft, 2) to characterize the error of an RSA system used to study migration, and 3) to determine the maximum amount of migration and the time when it occurs during cyclic loading of ACL grafts. Tendon markers were constructed from a 0.8-mm tantalum ball and a stainless steel suture. Ten double-looped tendon grafts were passed through tibial tunnels drilled in bovine tibias and fixed with a tibial fixation device. Two tendon markers were sewn to one tendon bundle of each graft and the grafts were cyclically loaded for 225,000 cycles from 20 N to 170 N. At specified intervals, simultaneous radiographs were obtained of the tendon markers and a radiographic standard of known length. The bias and imprecision in measuring the length of the radiographic standard were 0.0 and 0.046 mm respectively. Marker migration was computed as the change in distance between the two tendon markers along the axis of the tibial tunnel. Marker migration was greatest after 225,000 cycles with a root mean square (RMS) value of less than 0.2 mm. Because the RMS value indicates the error introduced into measurements of lengthening and because this error is small, the method described for attaching markers to an ACL graft has the potential to be useful for determining lengthening of ACL graft constructs in in vivo studies in humans.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHow Cyclic Loading Affects the Migration of Radio-Opaque Markers Attached to Tendon Grafts Using a New Method: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
    typeJournal Paper
    journal volume126
    journal issue1
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1644568
    journal fristpage62
    journal lastpage69
    identifier eissn1528-8951
    keywordsErrors
    keywordsTunnels
    keywordsTendons
    keywordsAnterior cruciate ligament
    keywordsTantalum
    keywordsCycles AND Soft tissues
    treeJournal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian