YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermodynamic Nonequilibrium Phase Change Behavior and Thermal Properties of Biological Solutions for Cryobiology Applications

    Source: Journal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 002::page 196
    Author:
    Bumsoo Han
    ,
    John C. Bischof
    DOI: 10.1115/1.1688778
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (≤−40°C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions–either water-NaCl or phosphate buffered saline (PBS)–with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight=6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes–water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (≤−100°C) regardless of the additives, but they increase between −100°C and −30°C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.
    keyword(s): Freezing , Biomaterials , Equilibrium (Physics) , Melting , Temperature , Cryonics , Thawing , Thermal properties , Ice , Solidification , Latent heat , Water , Cryobiology , Supercooling , Weight (Mass) , Phase transitions , Proteins , Sodium , Nucleation (Physics) AND Low temperature ,
    • Download: (416.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermodynamic Nonequilibrium Phase Change Behavior and Thermal Properties of Biological Solutions for Cryobiology Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129627
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBumsoo Han
    contributor authorJohn C. Bischof
    date accessioned2017-05-09T00:12:20Z
    date available2017-05-09T00:12:20Z
    date copyrightApril, 2004
    date issued2004
    identifier issn0148-0731
    identifier otherJBENDY-26359#196_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129627
    description abstractUnderstanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (≤−40°C). Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions–either water-NaCl or phosphate buffered saline (PBS)–with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight=6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes–water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (≤−100°C) regardless of the additives, but they increase between −100°C and −30°C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermodynamic Nonequilibrium Phase Change Behavior and Thermal Properties of Biological Solutions for Cryobiology Applications
    typeJournal Paper
    journal volume126
    journal issue2
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1688778
    journal fristpage196
    journal lastpage203
    identifier eissn1528-8951
    keywordsFreezing
    keywordsBiomaterials
    keywordsEquilibrium (Physics)
    keywordsMelting
    keywordsTemperature
    keywordsCryonics
    keywordsThawing
    keywordsThermal properties
    keywordsIce
    keywordsSolidification
    keywordsLatent heat
    keywordsWater
    keywordsCryobiology
    keywordsSupercooling
    keywordsWeight (Mass)
    keywordsPhase transitions
    keywordsProteins
    keywordsSodium
    keywordsNucleation (Physics) AND Low temperature
    treeJournal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian