YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Determination of Poisson’s Ratio of Articular Cartilage by Indentation Using Different-Sized Indenters

    Source: Journal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 002::page 138
    Author:
    Hui Jin
    ,
    Jack L. Lewis
    DOI: 10.1115/1.1688772
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Articular cartilage is often characterized as an isotropic elastic material with no interstitial fluid flow during instantaneous and equilibrium conditions, and indentation testing commonly used to deduce material properties of Young’s modulus and Poisson’s ratio. Since only one elastic parameter can be deduced from a single indentation test, some other test method is often used to allow separate measurement of both parameters. In this study, a new method is introduced by which the two material parameters can be obtained using indentation tests alone, without requiring a secondary different type of test. This feature makes the method more suitable for testing small samples in situ. The method takes advantages of the finite layer effect. By indenting the sample twice with different-sized indenters, a nonlinear equation with the Poisson’s ratio as the only unknown can be formed and Poisson’s ratio obtained by solving the nonlinear equation. The method was validated by comparing the predicted Poisson’s ratio for urethane rubber with the manufacturer’s supplied value, and comparing the predicted Young’s modulus for urethane rubber and an elastic foam material with modulii measured by unconfined compression. Anisotropic and nonhomogeneous finite-element (FE) models of the indentation were developed to aid in data interpretation. Applying the method to bovine patellar cartilage, the tissue’s Young’s modulus was found to be 1.79±0.59 MPa in instantaneous response and 0.45±0.26 MPa in equilibrium, and the Poisson’s ratio 0.503±0.028 and 0.463±0.073 in instantaneous and equilibrium, respectively. The equilibrium Poisson’s ratio obtained in our work was substantially higher than those derived from biphasic indentation theory and those optically measured in an unconfined compression test. The finite element model results and examination of viscoelastic-biphasic models suggest this could be due to viscoelastic, inhomogeneity, and anisotropy effects.
    keyword(s): Elasticity , Equilibrium (Physics) , Poisson ratio , Cartilage AND Compression ,
    • Download: (248.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Determination of Poisson’s Ratio of Articular Cartilage by Indentation Using Different-Sized Indenters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129620
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorHui Jin
    contributor authorJack L. Lewis
    date accessioned2017-05-09T00:12:19Z
    date available2017-05-09T00:12:19Z
    date copyrightApril, 2004
    date issued2004
    identifier issn0148-0731
    identifier otherJBENDY-26359#138_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129620
    description abstractArticular cartilage is often characterized as an isotropic elastic material with no interstitial fluid flow during instantaneous and equilibrium conditions, and indentation testing commonly used to deduce material properties of Young’s modulus and Poisson’s ratio. Since only one elastic parameter can be deduced from a single indentation test, some other test method is often used to allow separate measurement of both parameters. In this study, a new method is introduced by which the two material parameters can be obtained using indentation tests alone, without requiring a secondary different type of test. This feature makes the method more suitable for testing small samples in situ. The method takes advantages of the finite layer effect. By indenting the sample twice with different-sized indenters, a nonlinear equation with the Poisson’s ratio as the only unknown can be formed and Poisson’s ratio obtained by solving the nonlinear equation. The method was validated by comparing the predicted Poisson’s ratio for urethane rubber with the manufacturer’s supplied value, and comparing the predicted Young’s modulus for urethane rubber and an elastic foam material with modulii measured by unconfined compression. Anisotropic and nonhomogeneous finite-element (FE) models of the indentation were developed to aid in data interpretation. Applying the method to bovine patellar cartilage, the tissue’s Young’s modulus was found to be 1.79±0.59 MPa in instantaneous response and 0.45±0.26 MPa in equilibrium, and the Poisson’s ratio 0.503±0.028 and 0.463±0.073 in instantaneous and equilibrium, respectively. The equilibrium Poisson’s ratio obtained in our work was substantially higher than those derived from biphasic indentation theory and those optically measured in an unconfined compression test. The finite element model results and examination of viscoelastic-biphasic models suggest this could be due to viscoelastic, inhomogeneity, and anisotropy effects.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDetermination of Poisson’s Ratio of Articular Cartilage by Indentation Using Different-Sized Indenters
    typeJournal Paper
    journal volume126
    journal issue2
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1688772
    journal fristpage138
    journal lastpage145
    identifier eissn1528-8951
    keywordsElasticity
    keywordsEquilibrium (Physics)
    keywordsPoisson ratio
    keywordsCartilage AND Compression
    treeJournal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian