YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vocal Fold Tissue Failure: Preliminary Data and Constitutive Modeling†

    Source: Journal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 004::page 466
    Author:
    Roger W. Chan
    DOI: 10.1115/1.1785804
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In human voice production (phonation), linear small-amplitude vocal fold oscillation occurs only under restricted conditions. Physiologically, phonation more often involves large-amplitude oscillation associated with tissue stresses and strains beyond their linear viscoelastic limits, particularly in the lamina propria extracellular matrix (ECM). This study reports some preliminary measurements of tissue deformation and failure response of the vocal fold ECM under large-strain shear. The primary goal was to formulate and test a novel constitutive model for vocal fold tissue failure, based on a standard-linear cohesive-zone (SL-CZ) approach. Tissue specimens of the sheep vocal fold mucosa were subjected to torsional deformation in vitro, at constant strain rates corresponding to twist rates of 0.01, 0.1, and 1.0 rad/s. The vocal fold ECM demonstrated nonlinear stress-strain and rate-dependent failure response with a failure strain as low as 0.40 rad. A finite-element implementation of the SL-CZ model was capable of capturing the rate dependence in these preliminary data, demonstrating the model’s potential for describing tissue failure. Further studies with additional tissue specimens and model improvements are needed to better understand vocal fold tissue failure.
    keyword(s): Stress , Shear (Mechanics) , Biological tissues , Failure , Vocal cords , Deformation AND Finite element analysis ,
    • Download: (447.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vocal Fold Tissue Failure: Preliminary Data and Constitutive Modeling†

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129599
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorRoger W. Chan
    date accessioned2017-05-09T00:12:18Z
    date available2017-05-09T00:12:18Z
    date copyrightAugust, 2004
    date issued2004
    identifier issn0148-0731
    identifier otherJBENDY-26372#466_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129599
    description abstractIn human voice production (phonation), linear small-amplitude vocal fold oscillation occurs only under restricted conditions. Physiologically, phonation more often involves large-amplitude oscillation associated with tissue stresses and strains beyond their linear viscoelastic limits, particularly in the lamina propria extracellular matrix (ECM). This study reports some preliminary measurements of tissue deformation and failure response of the vocal fold ECM under large-strain shear. The primary goal was to formulate and test a novel constitutive model for vocal fold tissue failure, based on a standard-linear cohesive-zone (SL-CZ) approach. Tissue specimens of the sheep vocal fold mucosa were subjected to torsional deformation in vitro, at constant strain rates corresponding to twist rates of 0.01, 0.1, and 1.0 rad/s. The vocal fold ECM demonstrated nonlinear stress-strain and rate-dependent failure response with a failure strain as low as 0.40 rad. A finite-element implementation of the SL-CZ model was capable of capturing the rate dependence in these preliminary data, demonstrating the model’s potential for describing tissue failure. Further studies with additional tissue specimens and model improvements are needed to better understand vocal fold tissue failure.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVocal Fold Tissue Failure: Preliminary Data and Constitutive Modeling†
    typeJournal Paper
    journal volume126
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.1785804
    journal fristpage466
    journal lastpage474
    identifier eissn1528-8951
    keywordsStress
    keywordsShear (Mechanics)
    keywordsBiological tissues
    keywordsFailure
    keywordsVocal cords
    keywordsDeformation AND Finite element analysis
    treeJournal of Biomechanical Engineering:;2004:;volume( 126 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian