Show simple item record

contributor authorM. P. O’Day
contributor authorW. A. Curtin
date accessioned2017-05-09T00:11:58Z
date available2017-05-09T00:11:58Z
date copyrightNovember, 2004
date issued2004
identifier issn0021-8936
identifier otherJAMCAV-26585#805_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129427
description abstractA superposition technique is introduced that allows for the application of discrete dislocation (DD) plasticity to a wide range of thermomechanical problems with reduced computational effort. Problems involving regions of differing elastic and/or plastic behavior are solved by superposing the solutions to i) DD models only for those regions of the structure where dislocation phenomena are permitted subject to either zero traction or displacement at every point on the boundary and ii) an elastic (EL) (or elastic/cohesive-zone) model of the entire structure subject to all desired loading and boundary conditions. The DD subproblem is solved with standard DD machinery for an elastically homogeneous material. The EL subproblem requires only a standard elastic or elastic/cohesive-zone finite element (FE) calculation. The subproblems are coupled: the negative of the tractions developed at the boundaries of the DD subproblem are applied as body forces in the EL subproblem, while the stress field of the EL subproblem contributes a driving force to the dislocations in the DD subproblem structure. This decomposition and the generic boundary conditions of the DD subproblem permit the DD machinery to be easily applied as a “black-box” constitutive material description in an otherwise elastic FE formulation and to be used in a broader scope of applications due to the overall enhanced computational efficiency. The method is validated against prior results for crack growth along a plastic/rigid bimaterial interface. Preliminary results for crack growth along a metal/ceramic bimaterial interface are presented.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Superposition Framework for Discrete Dislocation Plasticity
typeJournal Paper
journal volume71
journal issue6
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.1794167
journal fristpage805
journal lastpage815
identifier eissn1528-9036
keywordsPlasticity
keywordsDislocations
keywordsStress
keywordsBoundary-value problems
keywordsEquations
keywordsDisplacement AND Force
treeJournal of Applied Mechanics:;2004:;volume( 071 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record