| contributor author | V. S. P. Chaluvadi | |
| contributor author | H. Ohyama | |
| contributor author | E. Watanabe | |
| contributor author | A. I. Kalfas | |
| contributor author | H. P. Hodson | |
| date accessioned | 2017-05-09T00:11:44Z | |
| date available | 2017-05-09T00:11:44Z | |
| date copyright | January, 2003 | |
| date issued | 2003 | |
| identifier issn | 0889-504X | |
| identifier other | JOTUEI-28700#14_1.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/129286 | |
| description abstract | This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Compound lean angles have been employed to achieve relatively low blade loading for hub and tip sections and so reduce the secondary losses. The flow field is investigated in a low-speed research turbine using pneumatic and hot-wire probes downstream of the blade row. Steady and unsteady numerical simulations were performed using structured 3-D Navier-Stokes solver to further understand the flow field. Agreement between the simulations and the measurements has been found. The unsteady measurements indicate that there is a significant effect of the stator flow interaction in the downstream rotor blade. The transport of the stator viscous flow through the rotor blade row is described. Unsteady numerical simulations were found to be successful in predicting accurately the flow near the secondary flow interaction regions compared to steady simulations. A method to calculate the unsteady loss generated inside the blade row was developed from the unsteady numerical simulations. The contribution of various regions in the blade to the unsteady loss generation was evaluated. This method can assist the designer in identifying and optimizing the features of the flow that are responsible for the majority of the unsteady loss production. An analytical model was developed to quantify this effect for the vortex transport inside the downstream blade. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Blade Row Interaction in a High-Pressure Steam Turbine | |
| type | Journal Paper | |
| journal volume | 125 | |
| journal issue | 1 | |
| journal title | Journal of Turbomachinery | |
| identifier doi | 10.1115/1.1518504 | |
| journal fristpage | 14 | |
| journal lastpage | 24 | |
| identifier eissn | 1528-8900 | |
| keywords | Flow (Dynamics) | |
| keywords | Rotors | |
| keywords | Vortices | |
| keywords | Blades | |
| keywords | Stators | |
| keywords | Measurement | |
| keywords | Wakes | |
| keywords | Pressure AND Computer simulation | |
| tree | Journal of Turbomachinery:;2003:;volume( 125 ):;issue: 001 | |
| contenttype | Fulltext | |