YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spatially Resolved Heat Transfer and Friction Factors in a Rectangular Channel With 45-Deg Angled Crossed-Rib Turbulators

    Source: Journal of Turbomachinery:;2003:;volume( 125 ):;issue: 003::page 575
    Author:
    P. M. Ligrani
    ,
    G. I. Mahmood
    DOI: 10.1115/1.1565353
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Spatially resolved Nusselt numbers, spatially averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with perpendicular orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 10,000 to 83,700. The ratio of rib height to hydraulic diameter is .078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25% of the channel cross-sectional area. Nusselt numbers are given both with and without three-dimensional conduction considered within the acrylic test surface. In both cases, spatially resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer reattachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) vary locally on the rib tops as Reynolds number increases. Nusselt number ratios decrease on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. When adjusted to account for conduction along and within the test surface, Nusselt number ratios show different quantitative variations (with location along the test surface), compared to variations when no conduction is included. Changes include: (i) decreased local Nusselt number ratios along the central part of each rib top surface as heat transfer from the sides of each rib becomes larger, and (ii) Nusselt number ratio decreases near corners, where each rib joins the flat part of the test surface, especially on the downstream side of each rib. With no conduction along and within the test surface (and variable heat flux assumed into the air stream), globally-averaged Nusselt number ratios vary from 2.92 to 1.64 as Reynolds number increases from 10,000 to 83,700. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range, with values in approximate agreement with data measured by other investigators in a square channel also with 45 deg oriented ribs.
    keyword(s): Heat transfer , Channels (Hydraulic engineering) , Reynolds number , Heat conduction , Heat flux , Friction , Flow (Dynamics) AND Temperature ,
    • Download: (528.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spatially Resolved Heat Transfer and Friction Factors in a Rectangular Channel With 45-Deg Angled Crossed-Rib Turbulators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129254
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorP. M. Ligrani
    contributor authorG. I. Mahmood
    date accessioned2017-05-09T00:11:40Z
    date available2017-05-09T00:11:40Z
    date copyrightJuly, 2003
    date issued2003
    identifier issn0889-504X
    identifier otherJOTUEI-28704#575_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129254
    description abstractSpatially resolved Nusselt numbers, spatially averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with perpendicular orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 10,000 to 83,700. The ratio of rib height to hydraulic diameter is .078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25% of the channel cross-sectional area. Nusselt numbers are given both with and without three-dimensional conduction considered within the acrylic test surface. In both cases, spatially resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer reattachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) vary locally on the rib tops as Reynolds number increases. Nusselt number ratios decrease on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. When adjusted to account for conduction along and within the test surface, Nusselt number ratios show different quantitative variations (with location along the test surface), compared to variations when no conduction is included. Changes include: (i) decreased local Nusselt number ratios along the central part of each rib top surface as heat transfer from the sides of each rib becomes larger, and (ii) Nusselt number ratio decreases near corners, where each rib joins the flat part of the test surface, especially on the downstream side of each rib. With no conduction along and within the test surface (and variable heat flux assumed into the air stream), globally-averaged Nusselt number ratios vary from 2.92 to 1.64 as Reynolds number increases from 10,000 to 83,700. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range, with values in approximate agreement with data measured by other investigators in a square channel also with 45 deg oriented ribs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSpatially Resolved Heat Transfer and Friction Factors in a Rectangular Channel With 45-Deg Angled Crossed-Rib Turbulators
    typeJournal Paper
    journal volume125
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.1565353
    journal fristpage575
    journal lastpage584
    identifier eissn1528-8900
    keywordsHeat transfer
    keywordsChannels (Hydraulic engineering)
    keywordsReynolds number
    keywordsHeat conduction
    keywordsHeat flux
    keywordsFriction
    keywordsFlow (Dynamics) AND Temperature
    treeJournal of Turbomachinery:;2003:;volume( 125 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian