YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Compression of a Single Transverse Ridge in a Circular Elastohydrodynamic Contact

    Source: Journal of Tribology:;2003:;volume( 125 ):;issue: 002::page 275
    Author:
    R. P. Glovnea
    ,
    J. W. Choo
    ,
    A. V. Olver
    ,
    H. A. Spikes
    DOI: 10.1115/1.1506325
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A detailed experimental study has been made of the behavior of a 100 nm high transversely oriented ridge in an elastohydrodynamic (EHD) contact. Ultra-thin film interferometry has been used to measure film profiles accurately over a very wide range of lubricant film thicknesses, from a few nanometers up to nearly one micron. This enables the recovery of the amplitude of the inlet perturbation geometry with increasing EHD film thickness to be quantified and compared with numerical predictions. In pure rolling under very thin film conditions, corresponding to a smooth surface EHD film thickness of 10 nm, the surfaces near the ridge were squashed down, leading to a constriction in the film of only about 9 percent of the height of the un-deformed ridge. As the EHD film thickness increased, this deformation recovered until the ridge constriction regained about 90 percent of its original height at film thicknesses of about 1 μm. However this relatively rapid recovery only occurred in pure rolling and is attributed to the local perturbation of film convergence which the ridge generates while in the inlet region. This propagates through the contact at the mean speed of the surfaces and—in pure rolling—acts to diminish the effect of local squeeze. When sliding was present, the ridge remained almost fully deformed even when the mean film thickness was as much as twice the height of the original ridge. In this case, the ridge travels through the contact at a different speed from the mean of the two surfaces. The consequent decoupling of the ridge and the convergence perturbation results in a large local pressure due to squeeze which acts to inhibit recovery of the ridge. The general trend of the behavior of the lubricated ridge is shown to be in good agreement with earlier theoretical results.
    • Download: (356.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Compression of a Single Transverse Ridge in a Circular Elastohydrodynamic Contact

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/129162
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorR. P. Glovnea
    contributor authorJ. W. Choo
    contributor authorA. V. Olver
    contributor authorH. A. Spikes
    date accessioned2017-05-09T00:11:31Z
    date available2017-05-09T00:11:31Z
    date copyrightApril, 2003
    date issued2003
    identifier issn0742-4787
    identifier otherJOTRE9-28714#275_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/129162
    description abstractA detailed experimental study has been made of the behavior of a 100 nm high transversely oriented ridge in an elastohydrodynamic (EHD) contact. Ultra-thin film interferometry has been used to measure film profiles accurately over a very wide range of lubricant film thicknesses, from a few nanometers up to nearly one micron. This enables the recovery of the amplitude of the inlet perturbation geometry with increasing EHD film thickness to be quantified and compared with numerical predictions. In pure rolling under very thin film conditions, corresponding to a smooth surface EHD film thickness of 10 nm, the surfaces near the ridge were squashed down, leading to a constriction in the film of only about 9 percent of the height of the un-deformed ridge. As the EHD film thickness increased, this deformation recovered until the ridge constriction regained about 90 percent of its original height at film thicknesses of about 1 μm. However this relatively rapid recovery only occurred in pure rolling and is attributed to the local perturbation of film convergence which the ridge generates while in the inlet region. This propagates through the contact at the mean speed of the surfaces and—in pure rolling—acts to diminish the effect of local squeeze. When sliding was present, the ridge remained almost fully deformed even when the mean film thickness was as much as twice the height of the original ridge. In this case, the ridge travels through the contact at a different speed from the mean of the two surfaces. The consequent decoupling of the ridge and the convergence perturbation results in a large local pressure due to squeeze which acts to inhibit recovery of the ridge. The general trend of the behavior of the lubricated ridge is shown to be in good agreement with earlier theoretical results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCompression of a Single Transverse Ridge in a Circular Elastohydrodynamic Contact
    typeJournal Paper
    journal volume125
    journal issue2
    journal titleJournal of Tribology
    identifier doi10.1115/1.1506325
    journal fristpage275
    journal lastpage282
    identifier eissn1528-8897
    treeJournal of Tribology:;2003:;volume( 125 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian