The Design of a New Metal Forming Press with Controllable MechanismSource: Journal of Mechanical Design:;2003:;volume( 125 ):;issue: 003::page 582DOI: 10.1115/1.1587748Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Metal forming press is one of the most commonly used manufacturing machines. Every day, millions of parts are produced by metal forming ranging from battery caps to automotive body panels. Therefore, even a small improvement may add to significant corporative gain. Currently, the metal forming presses can be divided into two categories: mechanical presses and hydraulic presses. The former is fast (high speed presses may reach up to several thousand shots per minute) and energy efficient (the large flywheel eases the impulsive force), but lacks flexibility. On the other hand, the hydraulic presses are flexible (their motions can be programmed) and accurate, but are expensive to build and to operate. Recently, there are mechanical presses driven by servomotors. They could perform as flexible as hydraulic presses with high speed. Nevertheless, they are even more expensive to build and to operate. This paper introduces a new design of mechanical press whose performances are programmable, including the trajectory and the velocity of the stroke, and yet, it is relatively inexpensive to build and to operate. The key idea of the new design is a 2-degree-of-freedom seven-bar linkage mechanism driven by a large constant speed motor and a small servomotor. First, the kinetics and kinematics of the design are presented including the feasibility conditions, mechanical advantage, as well as the torque and power distribution between the two motors. Next, a number of simulation results are given. The design (parameter) optimization is also carried out using Genetic Algorithm (GA). Based on computer simulation, it is shown that the new design is indeed very attractive.
keyword(s): Design , Optimization , Genetic algorithms , Presses , Mechanisms , Machinery , Metalworking , Motion AND Force ,
|
Collections
Show full item record
contributor author | R. Du | |
contributor author | W. Z. Guo | |
date accessioned | 2017-05-09T00:10:58Z | |
date available | 2017-05-09T00:10:58Z | |
date copyright | September, 2003 | |
date issued | 2003 | |
identifier issn | 1050-0472 | |
identifier other | JMDEDB-27757#582_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/128819 | |
description abstract | Metal forming press is one of the most commonly used manufacturing machines. Every day, millions of parts are produced by metal forming ranging from battery caps to automotive body panels. Therefore, even a small improvement may add to significant corporative gain. Currently, the metal forming presses can be divided into two categories: mechanical presses and hydraulic presses. The former is fast (high speed presses may reach up to several thousand shots per minute) and energy efficient (the large flywheel eases the impulsive force), but lacks flexibility. On the other hand, the hydraulic presses are flexible (their motions can be programmed) and accurate, but are expensive to build and to operate. Recently, there are mechanical presses driven by servomotors. They could perform as flexible as hydraulic presses with high speed. Nevertheless, they are even more expensive to build and to operate. This paper introduces a new design of mechanical press whose performances are programmable, including the trajectory and the velocity of the stroke, and yet, it is relatively inexpensive to build and to operate. The key idea of the new design is a 2-degree-of-freedom seven-bar linkage mechanism driven by a large constant speed motor and a small servomotor. First, the kinetics and kinematics of the design are presented including the feasibility conditions, mechanical advantage, as well as the torque and power distribution between the two motors. Next, a number of simulation results are given. The design (parameter) optimization is also carried out using Genetic Algorithm (GA). Based on computer simulation, it is shown that the new design is indeed very attractive. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | The Design of a New Metal Forming Press with Controllable Mechanism | |
type | Journal Paper | |
journal volume | 125 | |
journal issue | 3 | |
journal title | Journal of Mechanical Design | |
identifier doi | 10.1115/1.1587748 | |
journal fristpage | 582 | |
journal lastpage | 592 | |
identifier eissn | 1528-9001 | |
keywords | Design | |
keywords | Optimization | |
keywords | Genetic algorithms | |
keywords | Presses | |
keywords | Mechanisms | |
keywords | Machinery | |
keywords | Metalworking | |
keywords | Motion AND Force | |
tree | Journal of Mechanical Design:;2003:;volume( 125 ):;issue: 003 | |
contenttype | Fulltext |